Journal articles on the topic 'Hydrogen Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogen Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Lin, Xiaogang Yang, Houyong Yu, Chao Ma та Juming Yao. "Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite". RSC Adv. 4, № 27 (2014): 14304–13. http://dx.doi.org/10.1039/c4ra01284d.
Full textABDULSATTAR, MUDAR AHMED, and HASAN MUDAR ALMAROOF. "ADSORPTION OF H2 AND O2 GASES ON ZnO WURTZOID NANOCRYSTALS: A DFT STUDY." Surface Review and Letters 24, Supp01 (2017): 1850008. http://dx.doi.org/10.1142/s0218625x18500087.
Full textJAVAN, MASOUD BEZI. "ELECTRONIC AND OPTICAL PROPERTIES OF NITROGEN DOPED SiC NANOCRYSTALS: FIRST PRINCIPLES STUDY." International Journal of Modern Physics B 27, no. 13 (2013): 1350053. http://dx.doi.org/10.1142/s0217979213500537.
Full textDhavse, Rasika, Kumar Prashant, Chetan Dabhi, Anand Darji, and R. M. Patrikar. "Modified ITAT Model for Data Retention in Nanocrystals Based Flash Memory Gate Stack." Journal of Nano Research 45 (January 2017): 1–11. http://dx.doi.org/10.4028/www.scientific.net/jnanor.45.1.
Full textBerger, Thomas, Oliver Diwald, Erich Knözinger, Francesco Napoli, Mario Chiesa, and Elio Giamello. "Hydrogen activation at TiO2 anatase nanocrystals." Chemical Physics 339, no. 1-3 (2007): 138–45. http://dx.doi.org/10.1016/j.chemphys.2007.06.021.
Full textLiu, Zhengqing, Zongyou Yin, Casandra Cox, et al. "Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts." Science Advances 2, no. 9 (2016): e1501425. http://dx.doi.org/10.1126/sciadv.1501425.
Full textWan, Su Kim, and Seok Rhee Dong. "Synthesis of Titanium Dioxide in Hydrogen Peroxide Solution and its Photocatalytic Character." Advanced Materials Research 827 (October 2013): 34–37. http://dx.doi.org/10.4028/www.scientific.net/amr.827.34.
Full textYoo, Jisun, In Hye Kwak, Ik Seon Kwon, et al. "Nickel sulfide nanocrystals for electrochemical and photoelectrochemical hydrogen generation." Journal of Materials Chemistry C 8, no. 9 (2020): 3240–47. http://dx.doi.org/10.1039/c9tc05703j.
Full textWang, Weiyu, Jun Xu, Yanxi Zhao, et al. "Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization." Physical Chemistry Chemical Physics 19, no. 14 (2017): 9349–53. http://dx.doi.org/10.1039/c7cp00352h.
Full textKanemitsu, Yoshihiko, and Shinji Okamoto. "Optical properties of hydrogen terminated silicon nanocrystals." Solid-State Electronics 42, no. 7-8 (1998): 1315–18. http://dx.doi.org/10.1016/s0038-1101(98)00023-9.
Full textClark, Rhett J., Maryam Aghajamali, Christina M. Gonzalez, et al. "From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals." Chemistry of Materials 29, no. 1 (2016): 80–89. http://dx.doi.org/10.1021/acs.chemmater.6b02667.
Full textQuack, M., U. Schmitt, and M. A. Suhm. "Hydrogen fluoride clusters: from rings to nanocrystals." Journal of Aerosol Science 28 (September 1997): S363—S364. http://dx.doi.org/10.1016/s0021-8502(97)85182-8.
Full textNi, Zhen-Yi, Xiao-Dong Pi, and De-Ren Yang. "Can Hydrogen be Incorporated inside Silicon Nanocrystals?" Chinese Physics Letters 29, no. 7 (2012): 077801. http://dx.doi.org/10.1088/0256-307x/29/7/077801.
Full textZhu, Dongxu, Haihang Ye, Zheming Liu, et al. "Seed-mediated growth of heterostructured Cu1.94S–MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution." Nanoscale 12, no. 10 (2020): 6111–20. http://dx.doi.org/10.1039/c9nr10004k.
Full textZheng, Peng, Ruipeng Hao, Jianghong Zhao, Suping Jia, Baoyue Cao, and Zhenping Zhu. "Kinetic reconstruction of TiO2 surfaces as visible-light-active crystalline phases with high photocatalytic performance." J. Mater. Chem. A 2, no. 14 (2014): 4907–11. http://dx.doi.org/10.1039/c3ta15265k.
Full textLiu, Junfeng, Zhenxing Wang, Jeremy David, et al. "Colloidal Ni2−xCoxP nanocrystals for the hydrogen evolution reaction." Journal of Materials Chemistry A 6, no. 24 (2018): 11453–62. http://dx.doi.org/10.1039/c8ta03485k.
Full textChen, Jung-Hsuan, Shen-Chuan Lo, Chuen-Guang Chao, and Tzeng-Feng Liu. "A Study on Fabrication, Morphological and Optical Properties of Lead Sulfide Nanocrystals." Journal of Nanoscience and Nanotechnology 8, no. 2 (2008): 967–72. http://dx.doi.org/10.1166/jnn.2008.067.
Full textJiang, Yuchen, Guihua Li, Chenyu Yang, Fangong Kong, and Zaiwu Yuan. "Multiresponsive Cellulose Nanocrystal Cross-Linked Copolymer Hydrogels for the Controlled Release of Dyes and Drugs." Polymers 13, no. 8 (2021): 1219. http://dx.doi.org/10.3390/polym13081219.
Full textGao, Zhichao, Qian Gao, Zhipeng Liu, et al. "High-efficiency hydrogen evolution reaction catalyzed by iron phosphide nanocrystals." RSC Advances 6, no. 115 (2016): 114430–35. http://dx.doi.org/10.1039/c6ra24186g.
Full textMedarević, Djordje, Svetlana Ibrić, Elisavet Vardaka, Miodrag Mitrić, Ioannis Nikolakakis, and Kyriakos Kachrimanis. "Insight into the Formation of Glimepiride Nanocrystals by Wet Media Milling." Pharmaceutics 12, no. 1 (2020): 53. http://dx.doi.org/10.3390/pharmaceutics12010053.
Full textYuan, Meng, Ji-Lei Wang, Wen-Hui Zhou, et al. "Cu2ZnSnS4–CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production." Catalysis Science & Technology 7, no. 18 (2017): 3980–84. http://dx.doi.org/10.1039/c7cy01360d.
Full textMarukovich, E. I., and V. Yu Stetsenko. "ALUMINIUM BRONZE. NANOSTRUCTURAL PROCESSES OF MELTING AND MOULDING." Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), no. 1 (April 6, 2018): 12–15. http://dx.doi.org/10.21122/1683-6065-2018-1-12-15.
Full textWakayama, Hiroaki. "Nanoscale Structures and Hydrogen Storage Capacity of Fe-C-H Produced by Milling Graphite with Steel Balls in a Hydrogen Atmosphere." Journal of Nanomaterials 2019 (September 9, 2019): 1–7. http://dx.doi.org/10.1155/2019/5823969.
Full textLaracuente, A. R., L. A. Baker, and L. J. Whitman. "Copper silicide nanocrystals on hydrogen-terminated Si(001)." Surface Science 624 (June 2014): 52–57. http://dx.doi.org/10.1016/j.susc.2013.12.006.
Full textWang, Mengjiao, Zhiya Dang, Mirko Prato, et al. "Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolution." ACS Applied Nano Materials 2, no. 9 (2019): 5695–703. http://dx.doi.org/10.1021/acsanm.9b01205.
Full textKaminskii, V. M. "Dielectric characteristics of GaSe nanocrystals intercalated with hydrogen." Semiconductor physics, quantum electronics and optoelectronics 10, no. 3 (2007): 84–86. http://dx.doi.org/10.15407/spqeo10.03.084.
Full textKlinkova, Anna, Pavel V. Cherepanov, Ilya G. Ryabinkin, et al. "Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen." Small 12, no. 18 (2016): 2450–58. http://dx.doi.org/10.1002/smll.201600015.
Full textLiu, Xiaoxiao, Lei Zhang, Mengxia Li, and Xianluo Hu. "Tandem MoP nanocrystals with rich grain boundaries for efficient electrocatalytic hydrogen evolution." Chemical Communications 54, no. 20 (2018): 2502–5. http://dx.doi.org/10.1039/c7cc09137k.
Full textHan, Dong Ju, Sangtae Kim, and Eun Seon Cho. "Revealing the role of defects in graphene oxide in the evolution of magnesium nanocrystals and the resulting effects on hydrogen storage." Journal of Materials Chemistry A 9, no. 15 (2021): 9875–81. http://dx.doi.org/10.1039/d0ta12556c.
Full textLi, Yutong, Fuqiang Chu, Yunfei Bu, et al. "Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction." Chemical Communications 55, no. 54 (2019): 7828–31. http://dx.doi.org/10.1039/c9cc03668g.
Full textKhan, Majid, Ammar Bin Yousaf, and Muhammad Imran. "Pd Octahedral and Spherical Nanocrystals Supported on Crumpled Graphene Oxide: Their Comparative Studies for Electrocatalytic Applications." Journal of New Materials for Electrochemical Systems 19, no. 3 (2016): 121–30. http://dx.doi.org/10.14447/jnmes.v19i3.308.
Full textZhang, Xun, Jun Meng, Beien Zhu, et al. "In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure." Chemical Communications 53, no. 99 (2017): 13213–16. http://dx.doi.org/10.1039/c7cc07649e.
Full textFang, Zheng, Jiajing Zhou, Yimin Sun, et al. "Homoepitaxial growth on semiconductor nanocrystals for efficient and stable visible-light photocatalytic hydrogen evolution." Nanoscale 9, no. 45 (2017): 17794–801. http://dx.doi.org/10.1039/c7nr05206e.
Full textMasikini, Milua, Peter M. Ndangili, Chinwe O. Ikpo, et al. "Optoelectronics of Stochiometrically Controlled Palladium Telluride Quantum Dots." Journal of Nano Research 40 (March 2016): 29–45. http://dx.doi.org/10.4028/www.scientific.net/jnanor.40.29.
Full textHan, Guoqiang, Shuguang Cao, and Bo Lin. "UV Photocatalytic Activity for Water Decomposition of SrxBa1−xNb2O6 Nanocrystals with Different Components and Morphologies." Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/2163608.
Full textGao, Chongfeng, Yang Zhang, Yaoyao Cao, Weihua Xiao, and Lujia Han. "Effect of Ultrafine Grinding Pretreatment on the Cellulose Fibers and Nanocrystals from Wheat Straw." Journal of Biobased Materials and Bioenergy 14, no. 3 (2020): 369–75. http://dx.doi.org/10.1166/jbmb.2020.1962.
Full textGuo, Yanzhen, Henglei Jia, Jianhua Yang, et al. "Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C3N4 hybrid nanostructures for photocatalytic hydrogen generation." Physical Chemistry Chemical Physics 20, no. 34 (2018): 22296–307. http://dx.doi.org/10.1039/c8cp04241a.
Full textWang, Zeyi, Xuelian Zhang, Zhuanghe Ren, et al. "In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2." Journal of Materials Chemistry A 7, no. 23 (2019): 14244–52. http://dx.doi.org/10.1039/c9ta03665b.
Full textWan, Song, Yipu Liu, Guo-Dong Li, Xiaotian Li, Dejun Wang, and Xiaoxin Zou. "Well-dispersed CoS2 nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction." Catalysis Science & Technology 6, no. 12 (2016): 4545–53. http://dx.doi.org/10.1039/c5cy02292d.
Full textRej, Sourav, Mahesh Madasu, Chih-Shan Tan, Chi-Fu Hsia, and Michael H. Huang. "Polyhedral Cu2O to Cu pseudomorphic conversion for stereoselective alkyne semihydrogenation." Chemical Science 9, no. 9 (2018): 2517–24. http://dx.doi.org/10.1039/c7sc05232d.
Full textYang, Geng, Fu Chen, and Zhousheng Yang. "Electrocatalytic Oxidation of Hydrogen Peroxide Based on the Shuttlelike Nano-CuO-Modified Electrode." International Journal of Electrochemistry 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/194183.
Full textZhou, Linan, Chao Zhang, Michael J. McClain, et al. "Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation." Nano Letters 16, no. 2 (2016): 1478–84. http://dx.doi.org/10.1021/acs.nanolett.5b05149.
Full textJia, Zhiqian, Huijie Sun, Qingyang Gu, Huize Lang, and Hankiz Abuduwayit. "Preparation of palladium nanocrystals by membrane absorption of hydrogen." Journal of Membrane Science 380, no. 1-2 (2011): 63–67. http://dx.doi.org/10.1016/j.memsci.2011.06.031.
Full textPalatinus, L., P. Brázda, P. Boullay, et al. "Hydrogen positions in single nanocrystals revealed by electron diffraction." Science 355, no. 6321 (2017): 166–69. http://dx.doi.org/10.1126/science.aak9652.
Full textJung, Yoon-Jin, Jong-Hwan Yoon, R. G. Elliman, and A. R. Wilkinson. "Photoluminescence from Si nanocrystals exposed to a hydrogen plasma." Journal of Applied Physics 104, no. 8 (2008): 083518. http://dx.doi.org/10.1063/1.3002913.
Full textWang, Gongming, and Yat Li. "Nickel Catalyst Boosts Solar Hydrogen Generation of CdSe Nanocrystals." ChemCatChem 5, no. 6 (2013): 1294–95. http://dx.doi.org/10.1002/cctc.201300034.
Full textZhang, Chi, Sinan Keten, Dominique Derome, and Jan Carmeliet. "Hydrogen bonds dominated frictional stick-slip of cellulose nanocrystals." Carbohydrate Polymers 258 (April 2021): 117682. http://dx.doi.org/10.1016/j.carbpol.2021.117682.
Full textWi, Dae Han, Se Young Park, Seunghoon Lee, Jiha Sung, Jong Wook Hong, and Sang Woo Han. "Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution." Journal of Materials Chemistry A 6, no. 27 (2018): 13225–35. http://dx.doi.org/10.1039/c8ta03462a.
Full textZhao, Chen, Zhi Yu, Jun Xing, et al. "Effect of Ag2S Nanocrystals/Reduced Graphene Oxide Interface on Hydrogen Evolution Reaction." Catalysts 10, no. 9 (2020): 948. http://dx.doi.org/10.3390/catal10090948.
Full textMiller, H. A., M. Bellini, F. Vizza, C. Hasenöhrl, and R. D. Tilley. "Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming." Catalysis Science & Technology 6, no. 18 (2016): 6870–78. http://dx.doi.org/10.1039/c6cy00720a.
Full text