Academic literature on the topic 'Hydrogen peroxide decomposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen peroxide decomposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrogen peroxide decomposition"
TSUKADA, MASAO, AKIHIKO SEO, and TOMOAKI YOKOKURA. "The decomposition of hydrogen peroxide." Juntendo Medical Journal 50, no. 4 (2004): 515–22. http://dx.doi.org/10.14789/pjmj.50.515.
Full textKnotter, D. Martin, Stefan De Gendt, M. Baeyens, Paul W. Mertens, and Marc M. Heyns. "Hydrogen Peroxide Decomposition in Ammonia Solutions." Solid State Phenomena 65-66 (November 1998): 15–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.65-66.15.
Full textCroiset, Eric, Steven F. Rice, and Russell G. Hanush. "Hydrogen peroxide decomposition in supercritical water." AIChE Journal 43, no. 9 (September 1997): 2343–52. http://dx.doi.org/10.1002/aic.690430919.
Full textLoeffler, M. J., and R. A. Baragiola. "Isothermal Decomposition of Hydrogen Peroxide Dihydrate." Journal of Physical Chemistry A 115, no. 21 (June 2, 2011): 5324–28. http://dx.doi.org/10.1021/jp200188b.
Full textKnotter, D. Martin, Stefan de Gendt, Martien Baeyens, Paul W. Mertens, and Marc M. Heyns. "Hydrogen Peroxide Decomposition in Ammonia Solutions." Journal of The Electrochemical Society 146, no. 9 (September 1, 1999): 3476–81. http://dx.doi.org/10.1149/1.1392499.
Full textEberhardt, Manfred K., Angel A. Román-Franco, and Margarita R. Quiles. "Asbestos-induced decomposition of hydrogen peroxide." Environmental Research 37, no. 2 (August 1985): 287–92. http://dx.doi.org/10.1016/0013-9351(85)90108-2.
Full textBourgeois, Marie-Josèphe, Marianne Vialemaringe, Monique Campagnole, and Evelyne Montaudon. "Réaction compétitive de la substitution homolytique intramoléculaire : décomposition de peroxydes allyliques dans le thioglycolate de méthyle." Canadian Journal of Chemistry 79, no. 3 (March 1, 2001): 257–62. http://dx.doi.org/10.1139/v01-024.
Full textWatts, Richard J., Michael K. Foget, Sung-Ho Kong, and Amy L. Teel. "Hydrogen peroxide decomposition in model subsurface systems." Journal of Hazardous Materials 69, no. 2 (October 1999): 229–43. http://dx.doi.org/10.1016/s0304-3894(99)00114-4.
Full textPetigara, Bhakti R., Neil V. Blough, and Alice C. Mignerey. "Mechanisms of Hydrogen Peroxide Decomposition in Soils." Environmental Science & Technology 36, no. 4 (February 2002): 639–45. http://dx.doi.org/10.1021/es001726y.
Full textHasegawa, Shinji, Kei Shimotani, Kentaro Kishi, and Hiroyuki Watanabe. "Electricity Generation from Decomposition of Hydrogen Peroxide." Electrochemical and Solid-State Letters 8, no. 2 (2005): A119. http://dx.doi.org/10.1149/1.1849112.
Full textDissertations / Theses on the topic "Hydrogen peroxide decomposition"
Qiu, Zhiping. "Improvement in hydrogen peroxide bleaching by decreasing manganese-induced peroxide decomposition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0034/MQ65515.pdf.
Full textSchmidt, Jeremy T. "Stabilized hydrogen peroxide decomposition dynamics in one-dimensional columns." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Spring2006/j%5Fschmidt%5F050306.pdf.
Full textMitchell, Michael S. "Oxidation of biological molecules with bicarbonate-activated hydrogen peroxide and the decomposition of hydrogen peroxide catalyzed by manganese(II) and bicarbonate." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0004948.
Full textWiddis, Stephen. "Computational and Experimental Studies of Catalytic Decomposition of H2O2 Monopropellant in MEMS-based Micropropulsion Systems." ScholarWorks @ UVM, 2012. http://scholarworks.uvm.edu/graddis/239.
Full textKwan, Wai P. (Wai Pang) 1974. "Kinetics of the Fe(III) initiated decomposition of hydrogen peroxide : experimental and model results." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80211.
Full textKwan, Wai P. (Wai Pang) 1974. "Decomposition of hydrogen peroxide and organic compounds in the presence of iron and iron oxides." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29585.
Full textIncludes bibliographical references.
Most advanced oxidation processes use the hydroxyl radical (OH) to treat pollutants found in wastewater and contaminated aquifers because OH reacts with numerous compounds at near diffusion-limited rates. OH can be made by reacting hydrogen peroxide (H202) with either Fe(II) (the Fenton reaction), Fe(1), or iron oxide. This dissertation investigated the factors that influence the decomposition rates of H202 and organic compounds, as well as the generation rate of -OH (VoH), in the presence of dissolved Fe(IH) and iron oxide. The Fe(III)-initiated chain reaction could be the dominant mechanism for the decomposition of H202 and organic compounds. The degradation rates of H14COOH, an OH probe, and H202 were measured in experiments at pH 4 containing either dissolved Fe(III) or ferrihydrite. Combined with the results from experiments using a radical chain terminator, we concluded that a solution chain reaction was important only in the Fe(III) system. In the ferrihydrite system the amount of dissolved Fe was insufficient to effectively propagate the chain reaction. In addition, a nonradical producing H202 loss pathway exists at the oxide surface. The oxidation rate of any dissolved organic compound can be predicted from VOH if the main sinks of -OH in the solution are known. Experiments using H14COOH and ferrihydrite, goethite, or hematite showed that VOH was proportional to the product of the concentrations of surface area and H202. Based on these results, a model was created for predicting the pseudo-first-order oxidation rate coefficients of dissolved organic compounds (korg) in systems containing iron oxide and H202. While our model successfully predicted korg in aquifer sand experiments, it yielded mixed results when compared to measurements from previously published studies.
(cont.) Some factors that could have caused the disagreements between model predictions and measurements were examined to refine our model. Results from experiments containing goethite, H 4COOH, and 2-Chlorophenol showed that H 4COOH detected more OH, which is produced at the oxide surface, than did 2-Chlorophenol. This was attributed to electrostatic attraction between the formate anions and the positively charged oxide surface, and could explain why our model, based on H14COOH, overpredicted the korg values of many neutral compounds.
by Wai P. Kwan.
Ph.D.
Pakarinen, Darius. "On the mechanism of H2O2 decomposition on UO2-surfaces." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240564.
Full textGeologiskt djupförvar av förbrukat kärnbränsle har undersökts som lösning i Sverige i över 40 år nu. Svensk kärnbränslehantering (SKB) driftsätter det geologiska djupförvaret och måste säkerställa att det förbrukade kärnbränslet hålls isolerat från omgivningen i tusentals år. Under denna tid måste förseglingen stå emot fysikalisk stress och korrosion. Det är därför viktigt för en säkerhetsanalys att undersöka de olika reaktioner som kommer ske. Om förseglingen bryts ned kommer kärnbränslet i kontakt med vattnet i berggrunden vilket leder till radiolys av vatten. Väteperoxid som skapas under radiolysen kan sedan oxidera den exponerade ytan av kärnbränslet, detta ökar upplösningen av radiotoxiska produkter. Väteperoxiden kan även katalytisk sönderdelas på kärnbränslets yta. Syftet med arbetet var att få fram selektiviteten för katalytisk sönderdelning av väteperoxid. Detta skulle uppnås analytiskt med kumarin som avskiljare för detektion av hydroxylradikaler som bildas när väteperoxid sönderdelas. Detta producerade det fluorescerande 7-hydroxykumarinet som med hög precision kunde mätas spektrofluorometriskt. Resultaten gav en ca 0,16% förhållande mellan •OH-produktion och väteperoxidkonsumtion. Likartade experiment gjordes med ZrO2 för jämförelse men resultaten var ofullständiga. Effekten av bikarbonat (en beståndsdel i grundvatten) undersöktes också. Genom addition av bikarbonat ökade experimentens reproducerbarhet och ökade även upplösningen av uran. Både uranet och bikarbonaten minskade den utgående fluorescerande signalen från 7-hydroxykumarinet.
Di, Menno Di Bucchianico Daniele. "The effect of solvent on the thermal and catalysed decomposition of hydrogen peroxide: an experimental and model analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textSerra, Maia Rui Filipe. "Relation between surface structural and chemical properties of platinum nanoparticles and their catalytic activity in the decomposition of hydrogen peroxide." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85149.
Full textPh. D.
Rustin, Gavin James Mr. "The Analysis of the Decomposition of Hydrogen Peroxide Using a Schiff Base Copper Complex By Cyclic Voltammetry." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/honors/224.
Full textBooks on the topic "Hydrogen peroxide decomposition"
Foget, Michael K. Goethite-catalyzed decomposition of hydrogen peroxide formulations: Implications for in situ bioremediation. 1992.
Find full textBook chapters on the topic "Hydrogen peroxide decomposition"
Ireneusz, Grubecki, and Zalewska Anna. "Optimal Feed Temperature for Hydrogen Peroxide Decomposition Process Occurring in the Reactor with Fixed-Bed of Commercial Catalase." In EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, 1434–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97773-7_123.
Full textBader, Klaus P., and Georg H. Schmid. "Photosynthetic Oxygen Evolution in the Filamentous Cyanobacterium Oscillatoria Chalybea: Interrelationship Between Water Splitting, Hydrogen Peroxide Decomposition and Nitrate Metabolism." In Nitrogen Fixation, 419–24. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3486-6_88.
Full textLee, Gun Dae, Y. J. Do, Seong Soo Park, and Seong Soo Hong. "Effect of Hydrogen Peroxide on the Photocatalytic Decomposition of 4-Nitrophenol over TiO2/Cr-Ti- MCM-41 Catalysts in Visible Light." In Materials Science Forum, 13–16. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.13.
Full textLowes, Bernard C. "Soil-Induced Decomposition of Hydrogen Peroxide." In In Situ Bioreclamation, 143–56. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-9301-1.50013-5.
Full textSatapathy, P. K. "Decomposition of Aqueous Hydrogen Peroxide by Colloidal Manganese Dioxide." In Current Perspectives on Chemical Sciences Vol. 10, 162–68. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/cpcs/v10/5017d.
Full textHaines, R. I., D. R. McCracken, and J. B. Rasewych. "Poster 10. Decomposition of hydrogen peroxide under Candu coolant conditions." In Water chemistry of nuclear reactor systems 5, 1: 309–310. Thomas Telford Publishing, 1989. http://dx.doi.org/10.1680/wconrs5v1.15470.0050.
Full text"Tetrapyrrolic Macrocycles with Magnesium, Alluminum, and Zinc in Hydrogen Peroxide Decomposition." In Progress in Organic and Physical Chemistry, 139–48. Apple Academic Press, 2013. http://dx.doi.org/10.1201/b13964-17.
Full textLin, C. C., F. R. Smith, N. Ichikawa, T. Baba, and M. Itow. "37. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures." In Water chemistry of nuclear reactor systems 5, 1: 145–151. Thomas Telford Publishing, 1989. http://dx.doi.org/10.1680/wconrs5v1.15470.0022.
Full textRebensdorff, B., and G. Wikmark. "38. Decomposition of hydrogen peroxide in high temperature water: a laboratory study." In Water chemistry of nuclear reactor systems 5, 1: 153–158. Thomas Telford Publishing, 1989. http://dx.doi.org/10.1680/wconrs5v1.15470.0023.
Full textHiroishi, D., and K. Ishigure. "Poster 12. Homogeneous and heterogeneous decomposition of hydrogen peroxide in high-temperature water." In Water chemistry of nuclear reactor systems 5, 1: 311–312. Thomas Telford Publishing, 1989. http://dx.doi.org/10.1680/wconrs5v1.15470.0051.
Full textConference papers on the topic "Hydrogen peroxide decomposition"
Mok, Jong Soo, Jason Helms, and William Anderson. "Decomposition and Vaporization Studies of Hydrogen Peroxide." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-4028.
Full textFaraon, Victor A., Simona F. Pop, Raluca M. Senin, Sanda M. Doncea, and Rodica M. Ion. "Porphyrin-zeolite nanomaterials for hydrogen peroxide decomposition." In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies 2012, edited by Paul Schiopu and Razvan Tamas. SPIE, 2012. http://dx.doi.org/10.1117/12.966386.
Full textCorpening, Jeremy, Stephen Heister, Willam Anderson, and Benjamin Austin. "A Model for Thermal Decomposition of Hydrogen Peroxide." In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-3373.
Full textMok, J. S., J. Sisco, and W. Anderson. "Analysis and Experiments of Hydrogen Peroxide Vaporization and Decomposition." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4621.
Full textKwon, Hyuckmo, Seongmin Rang, and Sejin Kwon. "Study of Catalytic Decomposition for Hydrogen Peroxide Gas Generator." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4458.
Full textLong, Matthew, and John Rusek. "The characterization of the propulsive decomposition of hydrogen peroxide." In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-3683.
Full textKrejci, David, Alexander Woschnak, Carsten Scharlemann, and Karl Ponweiser. "Hydrogen Peroxide Decomposition for Micro Propulsion: Simulation and Experimental Verification." In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5855.
Full textPalmer, Matthew, Antony Musker, and Graham Roberts. "Experimental Assessment of Heterogeneous Catalysts for the Decomposition of Hydrogen Peroxide." In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5695.
Full textFarhat, Kamal, Yann Batonneau, Charles Kappenstein, and Marie Théron. "Decomposition of hydrogen peroxide: influence of the shape of catalyst support." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6985.
Full textBramanti, Cristina, Angelo Cervone, Luca Romeo, Lucio Torre, Luca d'Agostino, Antony J. Musker, and Giorgio Saccoccia. "Experimental Characterization of Advanced Materials for the Catalytic Decomposition of Hydrogen Peroxide." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5238.
Full textReports on the topic "Hydrogen peroxide decomposition"
Walsh, Raymond F., and Alan M. Sutton. Pressure Effects on Hydrogen Peroxide Decomposition Temperature. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405753.
Full textSengupta, Debasis, Sandip Mazumder, J. V. Cole, and Samuel Lowry. Controlling Non-Catalytic Decomposition of High Concentration Hydrogen Peroxide. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada426795.
Full text