Academic literature on the topic 'Hydrogenotrophic methane producing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogenotrophic methane producing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrogenotrophic methane producing"

1

Chen, Jing, Matthew J. Wade, Jan Dolfing, and Orkun S. Soyer. "Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer." Journal of The Royal Society Interface 16, no. 154 (May 2019): 20190129. http://dx.doi.org/10.1098/rsif.2019.0129.

Full text
Abstract:
Methane-producing microbial communities are of ecological and biotechnological interest. Syntrophic interactions among sulfate reducers and aceto/hydrogenotrophic and obligate hydrogenotrophic methanogens form a key component of these communities, yet, the impact of these different syntrophic routes on methane production and their stability against sulfate availability are not well understood. Here, we construct model synthetic communities using a sulfate reducer and two types of methanogens representing different methanogenesis routes. We find that tri-cultures with both routes increase methane production by almost twofold compared to co-cultures and are stable in the absence of sulfate. With increasing sulfate, system stability and productivity decreases and does so faster in communities with aceto/hydrogenotrophic methanogens despite the continued presence of acetate. We show that this is due to a shift in the metabolism of these methanogens towards co-utilization of hydrogen with acetate. These findings indicate the important role of hydrogen dynamics in the stability and productivity of syntrophic communities.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Guishan, Na Jiang, Xiaoli Liu, and Xiuzhu Dong. "Methanogenesis from Methanol at Low Temperatures by a Novel Psychrophilic Methanogen, “Methanolobus psychrophilus” sp. nov., Prevalent in Zoige Wetland of the Tibetan Plateau." Applied and Environmental Microbiology 74, no. 19 (August 1, 2008): 6114–20. http://dx.doi.org/10.1128/aem.01146-08.

Full text
Abstract:
ABSTRACT The Zoige wetland of the Tibetan plateau is at permanent low temperatures and is a methane emission heartland of the plateau; however, cold-adaptive methanogens in the soil are poorly understood. In this study, a variety of methanogenic enrichments at 15�C and 30�C were obtained from the wetland soil. It was demonstrated that hydrogenotrophic methanogenesis was the most efficient type at 30�C, while methanol supported the highest methanogenesis rate at 15�C. Moreover, methanol was the only substrate to produce methane more efficiently at 15�C than at 30�C. A novel psychrophilic methanogen, strain R15, was isolated from the methanol enrichment at 15�C. Phylogenetic analysis placed strain R15 within the genus Methanolobus, loosely clustered with Methanolobus taylorii (96.7% 16S rRNA similarity). R15 produced methane from methanol, trimethylamine, and methyl sulfide and differed from other Methanolobus species by growing and producing methane optimally at 18�C (specific growth rate of 0.063 � 0.001 h−1) and even at 0�C. Based on these characteristics, R15 was proposed to be a new species and named “Methanolobus psychrophilus” sp. nov. The Km and V max of R15 for methanol conversion were determined to be 87.5 � 0.4 μM and 0.39 � 0.04 mM h−1 at 18�C, respectively, indicating a high affinity and conversion efficiency for methanol. The proportion of R15 in the soil was determined by quantitative PCR, and it accounted for 17.2% � 2.1% of the total archaea, enumerated as 107 per gram of soil; the proportion was increased to 42.4% � 2.3% in the methanol enrichment at 15�C. This study suggests that the psychrophilic methanogens in the Zoige wetland are likely to be methylotrophic and to play a role in methane emission of the wetland.
APA, Harvard, Vancouver, ISO, and other styles
3

Japperi, Nur Shuhadah, Zharif Zainulazfar Mohd Asri, Wan Zairani Wan Bakar, 'Aqilah Dollah, Mohd Fazril Irfan Ahmad Fuad, and Siti Nurliyana Che Mohamed Hussein. "Review on landfill gas formation from leachate biodegradation." Malaysian Journal of Chemical Engineering and Technology (MJCET) 4, no. 1 (May 21, 2021): 39. http://dx.doi.org/10.24191/mjcet.v4i1.12719.

Full text
Abstract:
Landfill waste management is a very crucial procedure in handling Municipal Solid Waste (MSW) because it may create significant environmental issues if it is not managed properly. Landfill leachate and landfill gas (LFG) is part of the landfill waste management which triggered lot of researchers especially in terms of the environmental implications associated with the movement of the gasses during the waste constituents’ processes. Hence, this paper review is aiming to understand the behaviour of leachate itself as a decomposition agent in producing landfill gas (biogas). Biogas is naturally produced by anaerobic bacteria through anaerobic digestion which is affected by operating parameters and substrate characteristic. The results indicate that temperature, pH, and C/N ratio of leachate are the important factors that could increase the production of biogas with high content of methane. Furthermore, in terms of microbial activity during anaerobic digestion process, hydrogenotrophic and acetoclastic methanogen are the dominant substrate that contribute in producing methane gas as the final product. Firmicutes and Bacteroidetes are the common fermentative bacteria that had been found during fermentation process in hydrolysis and acidogenic phases. While, methanobacterial, methanococcal, methanomicrobial, methanosarcinal, and methanopyral are being classified as orders among 65 types of methanogenic archaea during methanogenesis stage. Overall, the relationships between operating parameters and microbial structure are important aspects that need to be considered in order to optimize the production of methane gas.
APA, Harvard, Vancouver, ISO, and other styles
4

Chaucheyras-Durand, Frédérique, Sébastien Masséglia, Gérard Fonty, and Evelyne Forano. "Influence of the Composition of the Cellulolytic Flora on the Development of Hydrogenotrophic Microorganisms, Hydrogen Utilization, and Methane Production in the Rumens of Gnotobiotically Reared Lambs." Applied and Environmental Microbiology 76, no. 24 (October 22, 2010): 7931–37. http://dx.doi.org/10.1128/aem.01784-10.

Full text
Abstract:
ABSTRACT We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H2-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H2-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H2 utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.
APA, Harvard, Vancouver, ISO, and other styles
5

Kobayashi, Hajime, Ryohei Toyoda, Hiroyuki Miyamoto, Yasuhito Nakasugi, Yuki Momoi, Kohei Nakamura, Qian Fu, Haruo Maeda, Takashi Goda, and Kozo Sato. "Analysis of a Methanogen and an Actinobacterium Dominating the Thermophilic Microbial Community of an Electromethanogenic Biocathode." Archaea 2021 (March 1, 2021): 1–13. http://dx.doi.org/10.1155/2021/8865133.

Full text
Abstract:
Electromethanogenesis refers to the bioelectrochemical synthesis of methane from CO2 by biocathodes. In an electromethanogenic system using thermophilic microorganisms, metagenomic analysis along with quantitative real-time polymerase chain reaction and fluorescence in situ hybridization revealed that the biocathode microbiota was dominated by the methanogen Methanothermobacter sp. strain EMTCatA1 and the actinobacterium Coriobacteriaceae sp. strain EMTCatB1. RNA sequencing was used to compare the transcriptome profiles of each strain at the methane-producing biocathodes with those in an open circuit and with the methanogenesis inhibitor 2-bromoethanesulfonate (BrES). For the methanogen, genes related to hydrogenotrophic methanogenesis were highly expressed in a manner similar to those observed under H2-limited conditions. For the actinobacterium, the expression profiles of genes encoding multiheme c-type cytochromes and membrane-bound oxidoreductases suggested that the actinobacterium directly takes up electrons from the electrode. In both strains, various stress-related genes were commonly induced in the open-circuit biocathodes and biocathodes with BrES. This study provides a molecular inventory of the dominant species of an electromethanogenic biocathode with functional insights and therefore represents the first multiomics characterization of an electromethanogenic biocathode.
APA, Harvard, Vancouver, ISO, and other styles
6

Gieg, Lisa M., Kathleen E. Duncan, and Joseph M. Suflita. "Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas." Applied and Environmental Microbiology 74, no. 10 (March 31, 2008): 3022–29. http://dx.doi.org/10.1128/aem.00119-08.

Full text
Abstract:
ABSTRACT World requirements for fossil energy are expected to grow by more than 50% within the next 25 years, despite advances in alternative technologies. Since conventional production methods retrieve only about one-third of the oil in place, either large new fields or innovative strategies for recovering energy resources from existing fields are needed to meet the burgeoning demand. The anaerobic biodegradation of n-alkanes to methane gas has now been documented in a few studies, and it was speculated that this process might be useful for recovering energy from existing petroleum reservoirs. We found that residual oil entrained in a marginal sandstone reservoir core could be converted to methane, a key component of natural gas, by an oil-degrading methanogenic consortium. Methane production required inoculation, and rates ranged from 0.15 to 0.40 μmol/day/g core (or 11 to 31 μmol/day/g oil), with yields of up to 3 mmol CH4/g residual oil. Concomitant alterations in the hydrocarbon profile of the oil-bearing core revealed that alkanes were preferentially metabolized. The consortium was found to produce comparable amounts of methane in the absence or presence of sulfate as an alternate electron acceptor. Cloning and sequencing exercises revealed that the inoculum comprised sulfate-reducing, syntrophic, and fermentative bacteria acting in concert with aceticlastic and hydrogenotrophic methanogens. Collectively, the cells generated methane from a variety of petroliferous rocks. Such microbe-based methane production holds promise for producing a clean-burning and efficient form of energy from underutilized hydrocarbon-bearing resources.
APA, Harvard, Vancouver, ISO, and other styles
7

Iino, Takao, Koji Mori, and Ken-ichiro Suzuki. "Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei." International Journal of Systematic and Evolutionary Microbiology 60, no. 11 (November 1, 2010): 2563–66. http://dx.doi.org/10.1099/ijs.0.020131-0.

Full text
Abstract:
A mesophilic, hydrogenotrophic methanogen, designated strain Ki8-1T, was isolated from soil. Cells were strictly anaerobic, Gram-stain-negative, non-sporulating, motile by means of a single flagellum or tufted flagella, and curved or wavy rod-shaped (11–25 μm long). The temperature and pH for optimum growth were 30 °C and 7.5. The strain grew best in basal medium without the addition of NaCl. Methane was produced from H2 and formate. Acetate or yeast extract was required for growth. The G+C content of the genomic DNA of strain Ki8-1T was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Ki8-1T was a member of the genus Methanospirillum and showed 95.1 % sequence similarity to Methanospirillum hungatei NBRC 100397T. On the basis of its phenotypic characteristics and phylogenetic position, strain Ki8-1T is considered to represent a novel species of the genus Methanospirillum, for which the name Methanospirillum lacunae sp. nov. is proposed. The type strain is Ki8-1T (NBRC 104920T =JCM 16384T =DSM 22751T). Emended descriptions of the genus Methanospirillum and of Methanospirillum hungatei are also provided.
APA, Harvard, Vancouver, ISO, and other styles
8

Jianrong, Zhu, Hu Jicui, and Gu Xiasheng. "The bacterial numeration and an observation of a new syntrophic association for granular sludge." Water Science and Technology 36, no. 6-7 (September 1, 1997): 133–40. http://dx.doi.org/10.2166/wst.1997.0584.

Full text
Abstract:
The bacterial numeration and microbial observation were made on granular sludge from laboratory single and two-phase UASB reactors. It was shown that the fermentative bacteria (group I), H2-producing acetogenic bacteria (group II) and methanogenic bacteria (group III) of granular sludge in single UASB reactor were 9.3 × 108−4.3 × 109, 4.3 × 107−4.3 × 108, 2.0−4.3 × 108, respectively, during the granulation process. The sludge of methanogenic reactor exhibited the similar results. That indicates there is no big difference between suspended and granular sludge, and bacterial population for three groups of anaerobic bacteria are similar. The formation of granular sludge depends mainly on the organization and arrangement of bacteria. An observation of granular sludge using electron microscope revealed that the fermentative bacteria and hydrogenotrophic methanogens existed on outer surface of granules, and aceticlastic methanogens and H2-producing acetogenic bacteria occupied the inner layer. A new syntrophic association between Methanosaeta sp. and Syntrophomonas sp. (even plus Methanobrevibacter sp.) was observed. Because Methanosaeta can effectively convert the acetate (the end product of propionate and butyrate) to methane, such a new syntrophic association is supposed to support the degradation of short fatty acids and high methanogenic activity of granular sludge. Based on structural pattern, a hypothesis on mechanism of granulation called “crystallized nuclei formation” is proposed.
APA, Harvard, Vancouver, ISO, and other styles
9

Welander, Paula V., and William W. Metcalf. "Mutagenesis of the C1 Oxidation Pathway in Methanosarcina barkeri: New Insights into the Mtr/Mer Bypass Pathway." Journal of Bacteriology 190, no. 6 (January 4, 2008): 1928–36. http://dx.doi.org/10.1128/jb.01424-07.

Full text
Abstract:
ABSTRACT A series of Methanosarcina barkeri mutants lacking the genes encoding the enzymes involved in the C1 oxidation/reduction pathway were constructed. Mutants lacking the methyl-tetrahydromethanopterin (H4MPT):coenzyme M (CoM) methyltransferase-encoding operon (Δmtr), the methylene-H4MPT reductase-encoding gene (Δmer), the methylene-H4MPT dehydrogenase-encoding gene (Δmtd), and the formyl-methanofuran:H4MPT formyl-transferase-encoding gene (Δftr) all failed to grow using either methanol or H2/CO2 as a growth substrate, indicating that there is an absolute requirement for the C1 oxidation/reduction pathway for hydrogenotrophic and methylotrophic methanogenesis. The mutants also failed to grow on acetate, and we suggest that this was due to an inability to generate the reducing equivalents needed for biosynthetic reactions. Despite their lack of growth on methanol, the Δmtr and Δmer mutants were capable of producing methane from this substrate, whereas the Δmtd and Δftr mutants were not. Thus, there is an Mtr/Mer bypass pathway that allows oxidation of methanol to the level of methylene-H4MPT in M. barkeri. The data further suggested that formaldehyde may be an intermediate in this bypass; however, no methanol dehydrogenase activity was found in Δmtr cell extracts, nor was there an obligate role for the formaldehyde-activating enzyme (Fae), which has been shown to catalyze the condensation of formaldehyde and H4MPT in vitro. Both the Δmer and Δmtr mutants were able to grow on a combination of methanol plus acetate, but they did so by metabolic pathways that are clearly distinct from each other and from previously characterized methanogenic pathways.
APA, Harvard, Vancouver, ISO, and other styles
10

Wilkins, David, Xiao-Ying Lu, Zhiyong Shen, Jiapeng Chen, and Patrick K. H. Lee. "Pyrosequencing ofmcrAand Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters." Applied and Environmental Microbiology 81, no. 2 (November 7, 2014): 604–13. http://dx.doi.org/10.1128/aem.02566-14.

Full text
Abstract:
ABSTRACTMethanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes.Methanobacteriales,Methanomicrobiales, andMethanosarcinaleswere detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of themcrAgenes suggested that these digesters were dominated by acetoclastic methanogens, particularlyMethanosarcinales, while the other digesters were dominated by hydrogenotrophicMethanomicrobiales. The proposed euryarchaeotal orderMethanomassiliicoccalesand the uncultured WSA2 group were detected with the 16S rRNA gene, and potentialmcrAgenes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using themcrAgene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance ofmcrAtranscripts in digesters treating sludge and wastewater samples, supporting themcrAgene as a biomarker for methane yield.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrogenotrophic methane producing"

1

Souidi, Khadidja. "Mikrobielle Diversität in Biogasreaktoren." Doctoral thesis, Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät, 2008. http://dx.doi.org/10.18452/15872.

Full text
Abstract:
Die Effizienz von Biogasreaktoren hängt im wesentlichen Maße von der Substratverwertung durch die beteiligte Mikroflora ab. Die genaue Zusammensetzung der mikrobiellen Gemeinschaft ist jedoch bislang nur oberflächlich charakterisiert. In dieser Studie wird daher eine Übersicht über die mikrobielle Diversität in verschiedenen Biogasreaktorentypen (Rührkesselreaktor, Leach-bed-Reaktor, Festbett-Anaerobfilter) während der Fermentation verschiedener pflanzlicher Substrate (Mais-, Rüben-, Triticum-Ganzpflanzensilage, teilweise in Kofermentation mit Rindergülle) gegeben. Die Charakterisierung der Mikrobiologie erfolgte mittels der Entwicklung und nachfolgenden bioinformatischen Analyse von 16S rDNA Bibliotheken. Es wurden insgesamt sechs 16S rDNA Bibliotheken konstruiert. Insgesamt umfassten diese sechs 16S rDNA Bibliotheken 627 Klone. Mittels der zugehörigen fingerprint-Muster (amplified rDNA restriction analysis, ARDRA) wurden innerhalb der sechs 16S rDNA Bibliotheken 223 taxonomische Gruppen (operational taxonomic units, OTU) detektiert. Zur Erfassung der Archaea wurden 402 Klone analysiert. Für die Erfassung der Bacteria wurden 283 Klone untersucht. Damit wurden 114 Archaea OTU sowie 109 Bacteria OTU detektiert. Die Dominanz von hydrogenotrophen Methanbildnern in den Archaeaspezifischen 16S rDNA Bibliotheken sowie deren große Diversität sind Indizien für eine verstärkte Bildung von Methan durch Oxidation von CO2. In diesem Falle würde die Verwertung des Acetats überwiegend durch syntrophe Bacteria erfolgen. Die Analyse der Diversität innerhalb der Domäne Bacteria ergab für den Rührkesselreaktor bei der Kofermentation von Maissilage und Gülle im Normalzustand eine hohe Diversität unter den Vertretern der Phyla Firmicutes mit dem Genus Clostridium.
The efficiency of biogas reactors depends on the substrate utilisation by the involved microbial community. However, the exact composition of the microbial biocoenosis was rudimental characterized. In this study an overview of the microbial diversity in different anaerobic biogas reactor types (completly stirred tank reactor, leach bed reactor, fixed bed anaerobic filter) is given for the fermentation of different substrates (corn-, carrots-, triticale whole crop silage as renewable raw materials, partly in co-fermentation with cattle liquid manure). The characterisation of the microbial community was conducted via the construction of 16S rDNA libraries for both, methanogenic Archaea and fermentative Bacteria. Individual taxonomic groups within the 16S rDNA libraries were determined by means of amplified rDNA restriction analysis (ARDRA). The taxonomic classification of these groups was performed via a phylogenetic analysis of representative 16S rDNA sequences. In total six 16S rDNA libraries with 627 clones were developed. Together 223 taxonomic groups were detected; from these 114 was assigned to the domain Archaea and further 109 was assigned to the domain Bacteria. Within the examined biogas reactors a high diversity was found within the hydrogenotrophic methane producing Archaea, acetotrophic methane producing Archaea appears only with a comparatively small diversity. From the domain Bacteria fermentative species of phylum Firmicutes especially of the genus Clostridium were found to be dominant in the microbial community.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography