Dissertations / Theses on the topic 'Hydrogeology – South Africa – Loxton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Hydrogeology – South Africa – Loxton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Marais, Leander Hugo. "A hydrogeochemical evaluation of groundwater in fractured rock aquifers using trace elements and stable isotopes at Loxton in the Central Karoo." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52081.
Full textENGLISH ABSTRACT: This study was conducted to assess groundwater characteristics of geologically different fracture rock aquifers, at different depths, by means of chemical, isotope and 14C-dating results and to test for a "deeper seated aquifer", with different characteristics. Jurassic dolerite dykes and sills, Cretaceous kimberlite fissures and pipes, as well as EW trending sinusoidal megafolds, comprise the structural domains of the study area. Fluvial sandstone and mudstone of the Beaufort Group are the dominant lithology of the study area. The main water type found in the area is a water type not dominated by any anions or cations in particular. The second is a water type in which Na-S04 is dominant, followed by a Na-HC03 dominated water and to a lesser extend a Ca-S04 type water. The main cause of groundwater salinity is the infiltration of evaporated water to the subsurface, suggested by the isotopic enrichment of 0180 and 02H, indicating very slow recharge from ponded water during excessive rainfall events. There is a fair difference in isotopic values between surface measurements and measurements taken at depth, enforcing the possibility of a "second deeper seated aquifer". The water with the lower 180 values, for samples at depth suggest that this water has a source further inland, from rainfall on the range to the NE, the Hex River Mountain or Pramberge, which has greatly depleted 180 values relative to SMOW. Most of the groundwater samples taken at depth indicated a 14C~dating of century age (±200 years), although in an evolutionary sequence the water is not such an old (evolved) water type, lending support to the theory about the migration of deeper seated water and thus a "second deeper seated aquifer system". The chemical character of the groundwater is predominantly controlled by the infiltration of evaporated surface and subsurface water, the topographical nature of the catchments, geological influences (i.e. the process of dissolution, precipitation and ion exchange) and the influence of man. Variability in water quality is caused by differences in rainfall, recharge, evaporation, topography, soil type and thickness, vegetation cover and antropogenic activities. Micro-scale differences occur due to the nature of groundwater flow in Karoo rocks, namely the resulting variations within matrix and fracture components of the groundwater flux. The residence times are often different for these two main components and give rise to the differences in mineralization and solute proportion in passing groundwater. This project should be seen as a basis of continuing study to provide the concrete answers needed to manage groundwater projects in the fractured rock aquifers of the Karoo. Enslin (1950) expresses the classical hydrological conceptualisation of Karoo dolerite dykes - lithe effect of induration and crushing of the sedimentary rock is that the permeability has been increased and the contact zone has been changed into an aquifer lying between the solid dyke and the saturated, low permeability country rock".
AFRIKAANSE OPSOMMING: Hierdie studie was onderneem met die doel. om grondwater eienskappe te ondersoek in geologies verskillende gekraakte / genate aquifere en by verskillende dieptes met die hulp van chemiese, isotopiese en 14C-datering resultate, om sodoende te toets vir 'n "tweede dieper liggende aqulfeer", met verskillende eienskappe. Doleriet gange en plate (Jura), kimberliet gange en pype (Kryt), sowel as OW lopende sinusvormige mega-verskuiwings en monoklienes van die Kaapse Plooi Gordel, Vorm die strukturele omgewings in die studie gebied. Die dominante litologie in die studie gebied is fluviaal gedeponeerde sandsteen en moddersteen van die Beaufort Groep. Die opvallendste water-tipe wat in die studie gebied waargeneem word is 'n grondwater wat geen dominante katione of anione toon nie, tweedens is daar 'n Na-S04 tipe grondwater wat gevolg word deur 'n Na-HC03 tipe water en daarna 'n Ca-S04 grondwater tipe. Die hoof oorsaak van saliniteit in the grondwater is die infiltrering van verdampte water na die grondwater-tafel, deur die verryking in 01BOen 02H, wat stadige infiltrasie van water na hewige reënval episodes voorstel. Die verskil van isotoop waardes by vlak en diepper watervlakke, steun die moontlikheid van die aanwesigheid van 'n "tweede dieper liggende aquifeer". Water met die lae 1BO-waardes (met diepte) dui op 'n opvangsgebied meer na die noordoostelike binneland, soos byvoorbeeld die Hex Rivier Berge en die Pramberge. Meeste van die grondwater monsters wat geneem is by 'n redelike diepte toon 'n 14C-datering waarde van ongeveer 200 jaar, alhoewel die water uit 'n evolutionere oogpunt nie so oud is nie en sodoende ondersteuning bied aan die teorie van die beweging van dieper liggende water en die bestaan van 'n "tweede dieper liggende aquifeer". Die chemiese karakter van grondwater word hoofsaaklik beheer deur die infiltrering van verdampte oppervlak water na die grondwater-tafel, die topografiese geaardheid van die opvangsgebied, geologiese invloede (soos die prosesse van presipitering, oplossing en ioon uitruiling), sowel as die infloed van die mens. Wisselvalligheid in die kwaliteit van grondwater word veroorsaak deur verskille in reënval, infiltrasie, evaporasie, topografie, grond tipe en diepte, plantegroei en die aktiwiteite van die mens. Verskille op mikro-vlak word veroorsaak deur die aard van die grondwater vloei deur die Karoo gesteentes, volgens die verskil in hidroliese geleiding tussen vloei in die matriks en vloei in die krake / nate. Daar is ook 'n verskil in die tydsbestek wat grondwater in die twee hoofstrukturele komponente deurbring en so die verskil in mineralisasie en saliniteit in die dinamiese grondwater veroorsaak. Die projek moet gesien word as die basis vir voortdurende studie om konkrete antwoorde te verseker vir die gebruik in grondwater bestuur projekte van die gekraakte / genate rots aquifere in die Karoo. Enslin (1950) konseptualiseer Karoo doleriet gange as volg: "die effek van indringing en verbrokkeling van sedimentêre gesteentes is dat die deurlaatbaarheid verhoog word en dat die kontak sone verander is na 'n aquifeer wat lê tussen die soliede gang en die versadigde, lae deurlaatbare wand-gesteentes".
Smart, Michael Charles. "Hydrogeology of the Queenstown 1:500 000 map region (Sheet 3126)." Thesis, Rhodes University, 1999. http://hdl.handle.net/10962/d1005583.
Full textAdonis, Shaheeda. "The hydrochemical characteristics of groundwater in the Incomati Estuary." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6324_1220530108.
Full textThe focus of this work was to monitor and evaluate the hydrochemical characteristics of the groundwater in the Incomati Estuary for a period of one year. The aims of this work were to evaluate the groundwater chemistry data for any spatial and temporal variations and to evaluate the suitability of the groundwater for drinking and irrigation purposes.
Bush, Richard Alan. "A hydrogeological assessment of the Uitenhage-Kuils River area, Cape Province, South Africa." Thesis, Rhodes University, 1987. http://hdl.handle.net/10962/d1001901.
Full textVenables, Anthony John. "A hydrogeological assessment of the Uitenhage-Coega artesian system." Thesis, Rhodes University, 1985. http://hdl.handle.net/10962/d1003815.
Full textMakubalo, Sisanda Sesethu. "Hydrogeochemistry of the groundwater in the Namaqualand region, South Africa : implications for surficial uranium mineralization." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/73255.
Full textDissertation (MSc)--University of Pretoria, 2020.
Council for Geoscience
Geology
MSc
Unrestricted
Martinelli, Giorgio Luigi. "The hydrogeology of a Karoo basalt/sandstone contact aquifer moretele II district Republic of Bophuthatswana southern Africa." Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1001902.
Full textCobbing, Jude Edmund. "The Grootfontein aquifer at Mahikeng, South Africa as hydro-social system." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/21351.
Full textParsons, Roger Paul. "The exploration and evaluation of groundwater units south and west of Graaf-Reinet, Cape Province, South Africa." Thesis, Rhodes University, 1987. http://hdl.handle.net/10962/d1007351.
Full textKMBT_363
Adobe Acrobat 9.53 Paper Capture Plug-in
Johnstone, Andrew Clifford. "A hydrogeological investigation of the Grootegeluk mine." Thesis, Rhodes University, 1989. http://hdl.handle.net/10962/d1001895.
Full textMahed, Gaathier. "Analysis of temporal and spatial variations in water storage by means of gravimetric and hydrologic methods in the region around the South African gravimetric observation station." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/6714.
Full textFoster, Michael Benedict John. "Geological control of aquifer properties of the Chuniespoort Group in the Klip River Valley and Natalspruit Basin, Transvaal." Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1013338.
Full textWoodford, A. C. "The exploration and evaluation of groundwater units in the Van Rynevelds Pass Dam Basin, north of Graaff-Reinet, Cape Province." Thesis, Rhodes University, 1989. http://hdl.handle.net/10962/d1013275.
Full textVermaak, Jan Johannes Gerhardus. "Geotechnical and hydrogeological characterization of residual soils in the vadose zone." Thesis, Pretoria : [s.n.], 2000. http://upetd.up.ac.za/thesis/available/etd-12042006-15912.
Full textHolland, Martin. "Groundwater resource directed measures in karst terrain with emphasis on aquifer characterisation in the cradle of humankind near Krugersdorp, South Africa." Pretoria: [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-08122008-093747.
Full textAdelana, Segun Michael Adegboyega. "Groundwater resource evaluation and protection in the Cape Flats, South Africa." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5620_1298543516.
Full textThe analysis of geologic, hydrologic and hydrogeologic data interpreted to give the characteristics of the Cape Flats aquifer showed the quality of groundwater from the aquifer is suitable for development as a water resource. The conceptual model of the Cape Flats sand shows an unconfined sandy aquifer, grading into semi-confined conditions in some places where thick lenses of clay and peat exists. Recharge rates through the saturated zone of the Cape Flats aquifer have been determined by water table fluctuation (WTF), rainfall-recharge relationship, soil water balance and chloride mass balance methods (CMB). Recharge rates using the WTF vary considerably between wet and dry years and between locations, with a range of 17.3% to 47.5%. Values obtained from empirical rainfall-recharge equation (method 2) agree with those of the WTF. Recharge estimates from the water balance model are comparatively lower but are within the range calculated using empirical method 2 (i.e. 87 &ndash
194 mm or 4 &ndash
21% of MAP). These recharge rates also agree with estimates from the series of other methods applied to sites located in the north-western coast of Western Cape and are comparable to recharge rates obtained elsewhere in the world.
Muchingami, Innocent I. "NON-INVASIVE CHARACTERIZATION OF UNSATURATED ZONE TRANSPORT IN DRY COAL ASH DUMPS: A CASE STUDY OF TUTUKA, SOUTH AFRICA." University of the Western Cape, 2013. http://hdl.handle.net/11394/4268.
Full textThe management of the large volumes of solid wastes produced as coal combustion residue is of particular concern due to the presence of leachable metals and salts which may constitute a long term environmental risk and potential contamination of both surface and groundwater systems of the surrounding environment. In order to implement an efficient monitoring scheme and to assess the impact of the ash dump on the hydrologic system, a thorough knowledge on the migration of solutes fluxes in dry ash dumps as well as the controls on the transport of these solutes to the underlying groundwater system is required. The conventional methods which have been widely used for such applications are centred on extracting and analysing several samples from observation wells are drilled on the dump. This has however created a potentially hazardous situation as the installation of monitoring wells may result in the creation of new fluid pathways and results in further migration of leachates. Nevertheless, non–invasive characterization has often been useful in the determination of subsurface hydraulic properties and is a key step towards the solution of real-life problems in hydrology, hydrogeology and soil science. In contaminant transport non-invasive methods have often proved to be an efficient tool as compared to traditional drilling and sampling techniques which in most cases results in the creation of preferential flow paths and do not allow for the space and time resolution needed for the monitoring of hydrological and environmental processes. In this context, this study seeks to develop a generic conceptual model for the ash dump through the use of non-invasive geophysical techniques and numerical modelling techniques at the Tutuka Ash dump, Mpumalanga South Africa. Changes in electrical resistivity were used correlate changes in moisture contents during moisture and salt leachate ingression in ash dumps with a sufficient accuracy. A determination of the suitability of Archie‘s law to describe the relationship between electrical resistivity and solute transport ash medium was achieved through empirical laboratory experiments. Electrical resistivity tomography was then used as an appropriate tool for the elucidation of potential flow paths and brine dispersion in the ash dump. The flow rates through the ash dump were estimated by considering the rate of brine injection and the distance travelled by the brine plume over the time spanned in time lapse infiltration experiments. Additional geophysical profiles managed to show the lithostratigraphy of underlying hydro-geology, thereby ensuring that the knowledge of the geology can be established without the application of any intrusive methods. To ensure that development of the conceptual model of the unsaturated zone transport of the ash dump was developed with sufficient accuracy, numerical models were also used to describe solute transport in the vadose zone. The HYDRUS2D numerical package was used simulate the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual understanding of water flow and salt transport through the unsaturated zone of the coal ash medium. The results from the study suggested a conceptual solute transport model that consists of a two layers. The upper layer represented the unsaturated zone of the ash dump which was the source of any potential contaminant transport that could be of concern. The lower layer describe the underlying the subsurface environment to the ash dump which include the soil zone, the shallow aquifer and the deep fractured rock aquifer. To enable this conceptualisation, results from the numerical simulations and geophysical interpretations of the electrical resistivity profiles were the critical components for optimising the site-specific subsurface water flow and solute transport processes, as well as producing the most acceptable conceptualisation of the ash dump system that could be used in hazard assessment and mitigation against potential groundwater pollution. The conceptual models developed in this study proposed an explanation on impact of the ash dump to the hydro-geologic and the eco-hydrologic environment by proposing a scenario of contamination of the underling ash dump and the existing. In this regard, the study managed to provide important scenarios that may be necessary during mitigation procedures for both the ash dump and the wetland. Key words: non-invasive, coal ash, time lapse, electrical resistivity tomography, numerical models, HYDRUS2D, conceptual model.
Biedler, Murray W. "Delineation of buried stream channels using geophysical techniques." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1005498.
Full textBeater, Anne Brenda. "The applicability of two simple single event rainfall-runoff models to catchments with different climate and physiography." Thesis, Rhodes University, 1990. http://hdl.handle.net/10962/d1001896.
Full textTanner, Jane Louise. "Understanding and modelling of surface and groundwater interactions." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1012994.
Full textMlisa, Andiswa. "Spatial decision support system for hydrogeological studies in Table Mountain Group Aquifers, Western Cape Province, South Africa." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/2473.
Full textThe Western Cape province of South Africa is a water scarce area with a Mediterranean climate. The majority of rainfall occurs in the cold winter months and the area experiences hot and dry summers. Studies done to investigate various water supply and water demand management options for the City of Cape Town, concluded that the Table Mountain Group (TMG) aquifer has the potential of yielding high volumes (estimated at 70Mm3/a) of good quality water, but that further research about this source as a potential augmentation supply to the City of Cape Town was necessary before extraction could commence. The aim of the study is to develop a spatial decision support system (SDSS) to be used by a hydrogeology project team, which includes hydrogeologists, environmentalists, ecologists, engineers and other stakeholders. The Table Mountain Group Aquifer (TMGA) SDSS is meant to be a decision support tool, but should also raise awareness about the use of spatial data and information and its capabilities for earth science and other multidisciplinary applications. By means of team discussions and interviews data, spatial analysis and data manipulation requirements were determined. Based on these requirements, four spatial analysis tools were developed. The spatial tool named “Borehole Analysis” analyses stratigraphic information obtained from existing boreholes and hydrogeological point data. The tool determines what groundwater use and monitoring has been undertaken in the area of interest. The “Topographic Analysis” tool identifies any topographical (e.g. rivers) and cadastral (e.g. farm boundaries) data within a certain distance from a possible borehole site. The “Sensitive Area Analysis” tool addresses queries with respect to sensitive areas, such as wetlands, statutory protected areas and private nature reserves. The “Image Classification” tool gives the team members an opportunity to use band ratios during image interpretation. The TMGA SDSS was developed using TNTmips v70, Extensible Markup Language (XML) and Spatial Manipulation Language (SML) and can be run on TNTAtlas v70, which is a free software. The TMGA SDSS enables the team members to have equal and ready access to data acquired by other members. This was found to support intra- and interdisciplinary conversation and facilitate understanding of how the data is being (or could be) used. It also contributes to levels of confidence in decision-making and supports a holistic approach to project design and implementation. Keywords: decision-making, geographic information system (GIS), spatial decision support systems (SDSS), spatial manipulation language (SML)
Ndwambi, Khuthadzo. "Investigation of Groundwater Potential in Naledi Local Municipality, North West Province, South Africa." Diss., 2016. http://hdl.handle.net/11602/843.
Full textRambuwani, Rudzani Vincent. "Hydrogeological characterisation and water supply potential of Lebalelo South, Limpopo Province of South Africa." Diss., 2020. http://hdl.handle.net/11602/1603.
Full textDepartment of Hydrology and Water Resources
Lebalelo area of Sekhukhune district is one of many areas in South Africa experiencing portable water scarcity, especially during prolonged dry season. Due to the dominance of low yielding aquifers in South Africa, it is essential to manage groundwater resources in these low yielding aquifers. However, the management of low yielding aquifer is difficult in areas like Labelelo where the hydrogeological characteristics of the aquifers are understudied. This study investigated the hydrogeological characteristics of the aquifers in the area using combined geophysical method and analytical groundwater models. Four newly drilled borehole and five existing boreholes were used for this study. Geophysical survey was carried out using magnetic and electromagnetic methods. The magnetic survey was used to locate the position of magnetic bodies such as dolerite dykes and different lithologies with different magnetic properties. The electromagnetic survey however, was used to determine zones of high permeability associated with the intrusive bodies as well as high permeability zones in fault planes. Step test, constant discharge test and recovery tests were conducted on all the boreholes to stress the borehole. This was used to determine a suitable and sustainable pumping rate of the aquifer. Pumping test data from the pumping period and recovery was evaluated and interpreted using AQTESOLVE. Aquifer transmissivity, storativity, internal and external hydraulic boundaries were determined from the data. The transmissivity in the area ranges from 0.08 to 124.7 m2/day. The aquifer types in the area are double porosity aquifer, radial flow aquifer with single porosity. Inductive Coupled Plasma (ICP-MS) was used to measure heavy metals, trace metals and cations while Ion Chromatography (IC) was used to determine anions in groundwater of the study area. The groundwater in the area is dominated by calcium carbonate as a result of long residence time with dolomite. The hydrochemistry of the water indicates that the chemistry of the groundwater in the area is mainly controlled by rock-water interaction.
NRF
Davis, Aqueelah. "Hydrogeological characteristics of Hartbeespoort Dam." Thesis, 2017. http://hdl.handle.net/10539/23729.
Full textHartbeespoort Dam, the source of irrigation and potable water for the local community of Hartbeespoort area is a vulnerable water resource. The aim of this research was to evaluate the interaction between dam water and groundwater as well as characterise the hydrochemical data from metals and tritium. The former was done through the application of environmental isotopes and the implementation of a long term water balance, while the latter used hydrochemical data to define the spatial distribution of metals and tritium. The results indicated that the dam water is separated from the groundwater in winter. Two sources of mixing were recognized to have occurred downstream of the dam in 2015 but not in the Hartbeespoort dam area. These were identified as artificial through the runoff of agricultural water that was abstracted from the dam and through the pumping of water near the fault. Higher than normal tritium concentration indicated that contamination comes through the Crocodile River after the fault connecting the river to Pelindaba, the nuclear power generation plant south of Hartbeespoort Dam in the Broederstroom area. The Crocodile River showed that the contamination of water by lead, 22.11ppb in summer and 3.8 ppb in winter, and cadmium,2.2 ppb in winter. The Magalies River feeds the dam with copper. All metals accumulate at the dam wall and settles in the sediment, diluting the downstream water. Boreholes near the dam and spring along the fault are vulnerable to contamination. The water balance estimation resulted 18 345 472m3, with a 3.9% error, gain of water to the dam from the groundwater greater than the amount exiting the dam to through groundwater. The groundwater entering the dam is estimated to be 32 517 704m3. The groundwater exiting the dam is estimated at 14 172 232m3. The difference in groundwater showed a decrease of 10 000 000m3 over the 15 year period from 1st October 2000 until the 30th September 2015. Consequently, these results show an increased stress placed on the groundwater presumably due to an increase in groundwater abstraction from agriculture and the expanding mining area.
GR2018
Nyawo, Bongizenzo Langelihle. "Groundwater and surface water interaction in the Uitenhage Artesian Basin, Eastern Cape, South Africa: case study of the Swartkops and Coega aquifer." Thesis, 2017. http://hdl.handle.net/10539/23509.
Full textThe state of water quality in the Swartkops River catchment in the Uitenhage area, Eastern Cape Province, South Africa, continues to be degraded by anthropogenic activities, which include municipal waste water, industrial waste and agricultural runoff. The study area consists of two aquifers (Swartkops and Coega) that are separated by the fault (Coega fault). In the study area there are two main rivers, namely: Swartkops River and Coega River, which are situated in the Swartkops Aquifer and Coega Aquifer, respectively. Most of the degrading anthropogenic activities are situated in the vicinity of the Swartkops River. The focus of the study was on the pollution of the stream water and aquifer (groundwater), with particular emphasis on the groundwater management. The study objectives were to establish the relationship between groundwater levels and surface topography using Bayesian interpolation method and groundwater and surface water interaction using environmental isotope and hydrogeochemical techniques. The bacteriological assessment was also conducted to determine if hydraulic connections exist between groundwater and the polluted streams. The results of the Bayesian Interpolation Method indicated that there was a strong relationship between the groundwater level elevation and surface topography with the correlation coefficient of 0.9953. The results also indicated that the fault is permeable; hence it did not have influence on groundwater circulation; however, groundwater does not flow from Swartkops River to Coega Aquifer due to groundwater flow gradient. The environmental isotope results indicated that both Swartkops Aquifer and Swartkops River were characterised by heavy isotopes signatures, which indicated the correlation between the two water components. The results further showed that the Swartkops River was recharging the Swartkops aquifer. However, no correlation was established between Swartkops River and Coega aquifer due to flow gradient. Although the flow gradient allows the flow of groundwater from Coega Aquifer to Swartkops Aquifer, Coega aquifer is a Government Water Controlled Area, which could have a very low to none impact on the other aquifer. Piper diagram and stiff diagrams indicated one water type found in the Swartkops and Coega aquifers, which was: Na-Cl type. The water in the Coega aquifer indicated high salinity in the chemical properties, which was typical old marine water derived from deep groundwater source. It was noted that the electrical conductivity values in the Waste Water Treatment Work were closest to those of the Swartkops River and Aquifer, which was in central to those of Coega Aquifer. The bacterial analysis results indicated that during the wet season most of the bacterial counts were high as compared to dry season. It was noted; however, that during the wet season the bacterial counts appeared similar in both aquifers. It is unlikely that the similarities emanated from the interaction of the two aquifers as the analysis of the results indicated that the bacterial counts found in the Coega Aquifer emanated from the farming activities. The study concluded that the fault act as a pathway for migration of groundwater flow. It was established that the groundwater only flows from Coega Aquifer to Swartkops Aquifer due to difference in the hydraulic gradient.
MT 2017
Ramusiya, Fhedzisani. "Hydrological Characterisation of the Shingwedzi and Mphongolo River Basins in Kruger National Park, South Africa." Diss., 2010. http://hdl.handle.net/11602/1057.
Full textMukheli, Azwindini. "Investigation of factors influencing borehole yields in the Nzhelele-Makhado Area in Limpopo Province, South Africa." Diss., 2018. http://hdl.handle.net/11602/1202.
Full textDepartment of Mining and Environmental Geology
This dissertation focused on the assessment of borehole yields within the Nzhelele- Makhado area, which is located in the northern part of South Africa within the Vhembe District Municipality of Limpopo Province. The aim of the study was to identify factors that influence the yields of water supply boreholes within the study area. This information will be used to improve the groundwater resource knowledge required in assessing the potential of groundwater resources in augmenting the Nzhelele Regional Water Supply Scheme. The study area is mostly underlain by the ‘hard rock’ formations of the Soutpansberg Group, which practically has no primary porosity. The groundwater is residing mainly within the weathered and fractured or discontinuities, considered being secondary porosities. Due to the complexity of the underlying fractured and hard rock aquifer systems and the fact that most of the boreholes drilled in the area were not scientifically sited, the study area is dominated by very low yielding boreholes. Majority (48%) of the boreholes were drilled into the Nzhelele formation due to the fact that it occupies the central, relatively flat and low lying sections of the study area. The variations in average yields in boreholes drilled in different formations within the study area is relatively low suggesting that the difference in lithology of different formations do not to have any major influence in the yields of boreholes. The topographical settings of the area do not have any influence in the borehole drilling depths and yields. The high borehole yields in shallow boreholes located in mountainous areas is due to local groundwater systems, which recharges and discharges locally. Mapped lineaments are slightly low yielding (average yield of 0.32 l/s) compared to the faults (average yield of 0.43 l/s) within the study area. Boreholes drilled along the NE-SW trending lineaments support double the yields (0.41 l/s) on average of those along the SE-NW (0.28 l/s) and W-E (0.20 l/s) trending lineaments. The high yields in boreholes closer to non-perennial streams compared to perennial rivers is due to the fact that non-perennial streams are comprised of thick layer of overburden capable of supporting high yielding boreholes, whereas the overburden along the perennial rivers are washed away during rainy season leaving bedrock exposed or covered with thin layer of sediments. The proximity to the young faults trending SE-NW and dry non-perennial streams has proved to be the most the favourable areas for development of high yielding boreholes in the study area, compared to lithological difference and topographical settings of the area. However, it should be noted that there are no simple relationship between various factors that control the yield of the boreholes in the area. Despite the similarities in some factors that influence borehole productivity on a regional scale such as faults and drainage systems, the complexity of the weathered-fractured aquifer system suggests an over-riding influence of local features, which results in significant variations in yield and response to abstraction.
NRF
Magakane, Ronald. "An integrated approach to groundwater exploration using remotely sensed imagery and geophysical techniques: a case study in the Archean basement and Karoo sedimentary basins of Limpopo Province of South Africa." Diss., 2019. http://hdl.handle.net/11602/1502.
Full textDepartment of Mining and Environmental Geology
Many recent studies have shown that some of the greatest water needs occur in areas underlain by crystalline rocks with complex hydrogeology. Crystalline basement rocks underlie over 60% of the South African surface, and the Limpopo Province of South Africa is no exception. Previous attempts to develop the lithologies of Limpopo for groundwater abstraction without the use of sound scientific methodologies resulted in low yielding boreholes and a higher rate of borehole failure. The complexity of the lithologies in the region necessitates the use of sound scientific methodologies for the delineation of promising groundwater potential zones. Therefore, the principal objective of the present study was to delineate groundwater potential zones through an integrated approach of remote sensing, geophysics, as well as the use of ancillary datasets. The area of focus is located in the northeastern section of Limpopo province, covering an area of about 16 800km2. Geologically, it is underlain by three Lithostratigraphic domains comprised of Archean-aged basement rocks, Soutpansberg volcano-sedimentary succession and subsidiary basins of the main Karoo young sedimentary cover. In general, the groundwater potential of a region is a function of factors such as lithology, lineaments, slope, climate and land use/ land cover. Thus, the present study used parameters such as lineaments, lithologies, slope, and land use/ land cover to produce a groundwater potential zone map. The thematic layers were prepared from raw datasets, which include; LANDSAT 8 OLI, ASTER-DEM, aeromagnetic data, geological maps, and land use/land cover data, which were overlaid in a GIS environment. The resultant groundwater map revealed the presence of five distinct classes of groundwater potential zones, which were categorised into excellent, good, moderate, low and very low. Interpretation of the results shows that the study area is dominated by areas that may be regarded as moderate water potential zones, covering about 52% of the total area. On the other hand, low and good groundwater potential zones occur in almost equal proportions of 19.52 % and 24 % respectively. The results obtained were validated using GRIP borehole dataset, and a number of follow-up geophysical surveys. iii Overlaying of the boreholes dataset on the map showed positive correlation between borehole yields groundwater potential zones. On the other hand, follow-up Vertical Electrical Sounding surveys revealed the presence of conductive layers in some selected target areas. The groundwater potential zone map and validation results provided a meaningful regional assessment of groundwater distribution in the study area. Thus, the results of this study can be used as a guideline for future groundwater exploration projects.
NRF
Denga, Masindi Esther. "Fabrication of metal-oxide modified porous ceramic granules from aluminosilicate clay soils for defluoridation of groundwater." Diss., 2017. http://hdl.handle.net/11602/894.
Full textDepartment of Ecology and Resource Management
Some boreholes in South Africa which serve as a source of drinking water for rural communities are reported to have high fluoride concentration, much above the WHO guideline of 1.5 mg/L. This study aimed at activating aluminosilicate clay soil mechanochemically, modifying aluminosilicate clay soil with Al-oxide and fabricating porous ceramic granules using Al-oxide modified mechanochemically activated aluminosilicate clay soil/ mechanochemically activated clay soil/ corn starch and evaluating their performances in defluoridation of groundwater. The raw clay materials were mechanochemically activated for 5, 10, 15 and 30 minutes for physicochemical transformation of the solid aggregate. The morphology of the samples showed the honeycomb structure. The surface area analyses of samples using Brunauer–Emmett–Teller (BET) gave the highest surface area of 50.5228 m2/g at 30 min activation time. Hence, the optimum activation time was 30 min. The Fourier Transform Infrared (FT-IR) analysis showed increase in the absorbance of FT-IR by Si-O-H groups at 510 cm-1 with increasing milling time. This is evidence that more surface Si-O-H groups were available at higher particle surface area that would be necessary to interact with fluoride. X-ray diffraction (XRD) analyses revealed that, at 30 minutes milling time, the peak broadening is intensified whereas the reflection peak intensities decreased. The X-ray fluorescence spectrometry (XRF) results for 30 minutes milling time showed that silica and alumina were the highest components in the clay soil. Using the activated clay in batch defluoridation of fluoride-spiked water, a maximum fluoride removal of 41% was achieved at a pHe of 2.41. The initial fluoride concentration was 9 mg/L while the sorbent dosage was 0.6 g/100 mL and the contact time being 30 minutes. The adsorption data fitted to both Langmuir and Freundlich isotherms. The adsorption data fitted only the pseudo-second-order kinetic, showing chemisorption. Optimization of Al3+ concentration for modification was carried out by modifying the mechanochemical activated aluminosilicate clay soil with different concentrations of Al3+ from which the optimum modification was achieved with 1.5 M. Characterisation studies on the Al-oxide modified mechanochemically activated aluminosilicate clay soil by SEM, BET, FT-IR, XRD and XRF, analyses were carried out to determine the resultant changes in physicochemical properties of the adsorbent owing to modification. The SEM image of Al-oxide modified mechanochemically activated clay soil showed many small pores and honey-comb structure on the surface of different images. The BET surface area and the BDH adsorption cumulative area of the Al-oxide modified mechanochemically activated v aluminosilicate clay soil were more than double those for the raw clay soil. There was also an increase in pore volume of the Al-oxide modified mechanochemically activated aluminosilicate clay soil. The FT-IR spectra showed that there was increase in the absorbance by the Si-OH, H-O-H, Al-O-H and Si-O-Al. The equilibrium pH of solution was higher than the point-of-zero charge (pHpzc) implying that fluoride removal occurred at solution pH > pHpzc where the net surface charge of the mechanochemically activated clay aluminosilicate soil was negative.The efficiency of 1.5 M Al-oxide modified aluminosilicate clay soil to remove fluoride from water was studied and found to be 96.5 % at pHe 6.86, contact time of 30 minutes and dosage of 0.3 g/100 mL for 10 mg/L fluoride solution at 200 rpm shaking speed. The result shows that Al-oxide modified mechanochemically activated aluminosilicate clay soil is effective for defluoridation. The adsorption data fitted to both Langmuir and Freundlich isotherms. The adsorption data fitted only the pseudo-second-order kinetic, showing chemisorption. Al-oxide modified mechanochemically activated aluminosilicate clay soil was tested for fluoride removal on field water and the percentage fluoride removal was 96.5 % at the dosage of 0.6 g/100 mL with the pHe of 6.48. The optimum Al-oxide modified mechanochemically activated aluminosilicate clay soil/ mechanochemically activated clay soil/ corn starch mixing ratio for fabrication of porous ceramic granules was determined by varying ratios and temperature. The optimum ratio found was 20:5:1.The porous ceramic granules were characterised using SEM, BET, FT-IR, XRD and XRF. SEM analysis showed that the porous ceramic granules have the porous structure of the organic foam template. The porous ceramic granule showed an increase in pore surface area and volume as compared to mechanochemically activated aluminosilicate clay soil. The FT-IR showed the presence of a strong broad bending and stretching vibrations band at about 993 cm-1 which shows the presence of Si–O–Si bonds. Mineralogical characterisation showed the presence of quartz, albite, horneblende and microcline as the main minerals of the calcined porous ceramic granules. The major oxides of the porous ceramic granules as shown by XRF analysis were SiO2, Al2O3, MnO and Na2O. The porous ceramic granules reduced the concentrations of fluoride in the water from 10 to 3.31 mg/L. The optimum adsorption capacity was 0.6648 mg/g at a pHe of 6.32 and the percentage fluoride removal was 66.9 % at an adsorbent dosage of 1.0063 g/100 mL and a temperature of 600 ⁰C. The porous ceramic granules were tested for fluoride removal on field water and the percentage fluoride removal was 45.4 % at the dosage of 1.0009 g/100 mL with the pHe of 7.87. Mechanochemically activated aluminosilicate clay soil showed higher adsorption capacity at acidic pH, therefore it is recommended that future work should focus on improving their adsorption capacity at wider range of pH. The porous ceramic granules can also be evaluated in column dynamic flow experiments.
Nzama, Stanley Mvuselelo. "Spatial and temporal assessment of groundwater-surface water interaction, Schoonspruit river catchment, North West, South Africa." Diss., 2016. http://hdl.handle.net/10500/22083.
Full textCentre for Sustainable Agriculture and Environmental Sciences
M. Sc. (Environmental Management)