Dissertations / Theses on the topic 'HYDROGRAPH SEPARATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'HYDROGRAPH SEPARATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kracht, Oliver. "Tracer-based hydrograph separation methods for sewer systems /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16994.
Full textBishop, Kevin Harold. "Episodic increases in stream acidity, catchment flow pathways and hydrograph separation." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239601.
Full textCimino, Joseph A. "Empirical mass balance calibration of analytical hydrograph separation techniques using electrical conductivity." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000213.
Full textXue, Han. "HYDROGRAPH-SEPARATION-BASED NON-POINT SOURCE POLLUTION MODELLING IN THE PINGQIAO RIVER BASIN,CHINA." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225566.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第20341号
工博第4278号
新制||工||1662(附属図書館)
京都大学大学院工学研究科社会基盤工学専攻
(主査)教授 寶 馨, 教授 立川 康人, 准教授 佐山 敬洋
学位規則第4条第1項該当
Kane, Dellwyn. "Hydrograph separation using end member mixing models in the Oona Water river catchment, Co Tyrone." Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529518.
Full textGatesman, Tiffany A. "Glacier Contribution to Lowland Streamflow| A Multi-Year, Geochemical Hydrograph Separation Study in Sub-Arctic Alaska." Thesis, University of Alaska Fairbanks, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10617441.
Full textGlacier melt affects the geochemical composition of rivers; however, quantifying the glacier contribution to subarctic watershed-scale runoff has attracted limited attention. To estimate glacier contribution, we conducted a 6-year geochemical hydrograph separation study in a geologically heterogeneous glacierized watershed in Interior Alaska. Water samples were collected daily from Jarvis Creek during late April through September. Source waters were collected synoptically each year from rain, snow, baseflow (winter discharge), and the glacier terminus discharge. All samples were analyzed for stable water isotopes and dissolved ion concentrations. Stream surface water samples have large seasonal and inter-annual geochemical variation, however, source waters show distinct chemical signatures allowing the application of a geochemical hydrograph separation model to quantify relative source contribution to lowland streamflow. Considerable inter-annual differences within source water signatures emphasize the importance in informing the model with source waters sampled for each season. We estimated a seasonal average of 35% (20 to 44%) glacier terminus discharge contribution with a daily range of 2 (May) to 80% (September). If glacier contribution was to cease completely, stream discharge would be reduced by 48% and 22% in low and high rainfall summers, respectively. Combined with the documented shrinkage of glaciers, our findings emphasizes the need for further research on glacial wastage effect on subarctic watersheds.
Marquis, John Paul. "Hydrograph separation using natural isotope and conductance methods in the West Kootenay area of British Columbia." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24859.
Full textScience, Faculty of
Resources, Environment and Sustainability (IRES), Institute for
Graduate
Tedder, Newton William. "Dissolved Road Salt Transport in Urban and Rural Watersheds in Massachusetts." Thesis, Boston College, 2009. http://hdl.handle.net/2345/984.
Full textThesis advisor: Yvette Kuiper
Chloride-based deicers (NaCl, CaCl2, MgCl2), also referred to as road salt, are the most common substances used in maintaining safe roadway surfaces during the winter months. Upon application, road salt reacts with the accumulated snow or ice to form brine equilibrium solutions along the liquidus line in the salt-water system. Dissolved salts dissociate, leading to increased concentrations of the respective ions in nearby soils, surface water, and groundwater. Of the ions present in road salt, chloride has the advantage of tracking all chloride deicers at the same time and since chloride ions are conservative tracers in soils it stays unaffected by ionic exchange interferences. This study explores the mechanisms of chloride return flows by investigating chloride dissolved loads, chloride concentrations in stream waters, seasonal patterns, and changes over the course of four years in two separate watersheds in Massachusetts with differing degrees of urbanization. The chloride tracking technique used in this study is based on calibrated chloride concentrations obtained from specific conductance signals recorded every 15 minutes by automatic recording systems at two locations, one in rural central Massachusetts and the other in urban eastern Massachusetts. These systems are maintained by the USGS, which also provide the simultaneously recorded stream flow datasets. The dissolved chloride load carried by each river is calculated for each single 15-minute interval by multiplying water volume with the corresponding chloride concentration, resulting in a total of over 34,000 data points per annum per site. Hydrograph separation techniques were used to separate dissolved load transported by each river into two separate flow components, event flow resulting from precipitation events, and baseflow resulting from groundwater discharge. Well defined hydrograph baseflow supported periods yield consistent chloride concentrations independent of the season at either urban or rural study sites. Comparison of direct runoff dissolved chloride loads with the total annual dissolved loads suggests that only a small fraction of the deicers actually removed during the overland runoff events and that a minimum of 60% of the total load discharged each year in both urban and rural systems is transported by groundwater. From groundwater recharge by brines rural watersheds are currently retaining as much as 95% of the total chloride applied to roadways each year while urban and suburban watersheds may only retain 75% of the total chloride applied to roadways each year. The increased retention of chloride in rural areas is likely due to the decreased amount of chloride transported during winter seasons as event flow compared to urban watersheds
Thesis (MS) — Boston College, 2009
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Geology and Geophysics
Cimino, Joseph A. (Joseph Anthony). "Empirical mass balance calibration of analytical hydrograph separation techniques using electrical conductivity [electronic resource] / by Joseph A. Cimino." University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000213.
Full textDocument formatted into pages; contains 75 pages.
Thesis (M.S.C.E.)--University of South Florida, 2003.
Includes bibliographical references.
Text (Electronic thesis) in PDF format.
ABSTRACT: Analytical baseflow separation techniques such as those used in the automated hydrograph separation program HYSEP rely on a single input parameter that defines the period of time after which surface runoff ceases and all streamflow is considered baseflow. In HYSEP, this input parameter is solely a function of drainage basin contributing area. This method cannot be applied universally since in most regions the time of surface runoff cessation is a function of a number of different hydrologic and hydrogeologic basin characteristics, not just contributing drainage area. This study demonstrates that streamflow conductivity can be used as a natural tracer that integrates the different hydrologic and hydrogeologic basin characteristics that influence baseflow response. Used as an indicator of baseflow as a component of total flow, streamflow conductivity allows for an empirical approach to hydrograph separation using a simple mass balance algorithm.
ABSTRACT: Although conductivity values for surface-water runoff and ground-water baseflow must be identified to apply this mass balance algorithm, field studies show that assumptions based on streamflow at low flow and high flow conditions are valid for estimating these end member conductivities. The only data required to apply the mass balance algorithm are streamflow conductivity and discharge measurements. Using minimal data requirements, empirical hydrograph separation techniques can be applied that yield reasonable estimates of baseflow. This procedure was performed on data from 10 USGS gaging stations for which reliable, real-time conductivity data are available. Comparison of empirical hydrograph separations using streamflow conductivity data with analytical hydrograph separations demonstrates that uncalibrated, graphical estimation of baseflow can lead to substantial errors in baseflow estimates.
ABSTRACT: Results from empirical separations can be used to calibrate the runoff cessation input parameter used in analytical separation for each gaging station. In general, collection of stream conductivity data at gaging stations is relatively recent, while discharge measurements may extend many decades into the past. Results demonstrate that conductivity data available for a relatively short period of record can be used to calibrate the runoff cessation input parameter used for analytical separation. The calibrated analytical method can then be applied over a much longer period record since discharge data are the only requirement.
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
Donelan, Jack E. "Groundwater-Surface Water Interaction in the Kern River| Estimates of Baseflow from Dissolved Radon Analysis and Hydrograph Separation Techniques." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841176.
Full textGeochemical mixing methods utilizing 222Rn and chloride and statistical hydrograph separation techniques were carried out in an attempt to understand baseflow dynamics in a section of the Kern River in the Sierra Nevada of Southern California. 222Rn has become a valuable tool for evaluating groundwater inflow to a river, particularly when groundwater and surface water have similar major ion geochemistry. When using geochemical methods it is important to minimize uncertainty through comparison with separate tracers and techniques, though this is complicated in this setting. Snow melt discharge and regulation of natural river flow cause hydrograph-based techniques to suffer from inaccuracies. Geochemical mixing using major ions and stable isotopes are complicated by the chemical similarity between surface water and groundwater. 222Rn is a powerful tool to elucidate this relationship in this setting if major uncertainties, like rate of radon degassing and parafluvial and hyporheic radon production can be constrained.
Damons, Matthew. "An assessment of the contribution of surface and subsurface flows to river flows of the Sandspruit in the Berg River Catchment, South Africa." University of the Western Cape, 2018. http://hdl.handle.net/11394/6415.
Full textStudies have shown that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly a result of atmospheric deposition of salts. The salts are transported to rivers through surface runoff and subsurface flow (i.e. through flow and groundwater flow). The purpose of this study was to determine the contributions of subsurface and surface flows to the total flows in the Sandspruit, Berg Catchment. Three rain events were studied. Water samples for two rain events were analysed for environmental tracers ?18O, Silica or Silicon dioxide (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. The tracers, Ca2+ and Mg2+, revealed inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated is that groundwater is the dominant contributor to flow, while surface runoff mainly contributes during the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a quicker response than boreholes further away from the river. Boreholes nearer to the river also indicate higher water levels in response to precipitation, in comparison to boreholes further from the river.
Elsenbeer, Helmut, Daniel Lorieri, and Mike Bonell. "Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment." Universität Potsdam, 1995. http://opus.kobv.de/ubp/volltexte/2008/1694/.
Full textHagby, Johannes. "Contributions of Event Water to Streamflow in an Agricultural Catchment." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353780.
Full textI ett jordbruksavrinningsområde spelar hydrologiska processer en viktig roll vid export av näringsämnen. Vatten som adderas till ett avrinningsområde från ett regnevent (eventvatten) kan ha olika flödesvägar och olika uppehållstider. Dessa påverkar transporten och omvandlingen av biogeokemiska näringsämnen olika tills det att vattnet lämnar avrinningsområdet via ett utlopp.Arbetet har fokuserat på vilket bidrag eventvatten och vatten som redan lagrats i avrinningsområdet före regnhändelsen (pre-eventvatten) har till avrinningen till en flod. Arbetet är viktigt för att utveckla en förståelse för vattenflödesvägar som är nödvändiga för ytterligare undersökning av export av näringsämnen. Metoden baserades på en isotopisk hydrograf-separation och utfördes på existerande data. Spåraren som användes var den stabila isotopen av syre i vatten (δ18O). Eftersom en ny studie planeras med användning av δ18O för att skilja olika flödesvägar och uppehållstider för vatten, har en sekventiell regnuppfångare också testats och förbättras.Resultaten av den hydrografa separationen visar att upp till 54% av en ökad avrinning i floden som resultat av ett regnevent är eventvatten, men även att det finns behov av data med högre tidsmässig upplösning behövs för att kunna kvantifiera bidrag från eventvatten till avrinningen för alla event. Fler och mer avancerade tester av regnfångaren skulle vara en fördel, men den kan även i dagsläget användas i fält. Baserat på resultat från experiment av regnuppfångaren föreslås kort en provtagningsstrategi för framtida arbeten.
Pianezzola, Luisa. "RUNOFF GENERATION IN A FORESTED PRE-ALPINE CATCHMENT: HYPOTHESIS TESTING BY MEANS OF ISOTOPIC AND GEOCHEMICAL TRACERS." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422670.
Full textNegli ultimi decenni e’ aumentato sempre di piu’ l’interesse nel meglio comprendere i complessi processi idrologici. In particolare, i meccanismi attraverso cui la precipitazione controlla i processi di generazione di deflusso superficiale e la variabilita’ spaziale e temporale delle componenti di deflusso sono attualmente ancora poco chiari. L’uso integrato dei traccianti isotopici e geochimici, abbinato ai dati idrometrici, si sta dimostrando uno strumento efficace e sempre piu’ utilizzato per studiare i sistemi idrologici e i meccanismi di generazione di deflusso superficiale e sottosuperficiale. In questo studio, gli isotopi stabili dell’acqua, la conducibilita’ elettrica e gli ioni sono stati utilizzati come traccianti insieme ai dati idrometrici al fine di i) analizzare la risposta della falda e dell’umidita’ del suolo rispetto alla risposta del torrente durante gli eventi di afflusso-deflusso ii) analizzare la variabilita’ spaziale e temporale dei traccianti (isotopi stabili dell’acqua, EC e ioni) nelle diverse componenti di deflusso superficiale iii) valutare il controllo esercitato dalle principali caratteristiche dell’evento sui processi di generazione di deflusso superficiale e ii) verificare come l’uso di diversi traccianti influenza i risultati ottenuti dalla separazione dell’idrogramma a due componenti. Per questo studio, sono stati analizzati i dati idrometrici e dei traccianti ricavati da 15 eventi di pioggia campionati durante diverse condizioni di umidita’ del suolo nel periodo che va da settembre 2015 ad ottobre 2016 in un piccolo bacino nelle prealpi italiane. Durante questo periodo sono stati misurati in continuo il livello del torrente, la precipitazione, la temperatura dell’aria, il livello della falda in 6 punti posti in diverse parti del bacino (zona riparia, zona di basso versante, versante) e l’umidita’ del suolo in 4 punti disposti lungo un transetto dal torrente al versante. Inoltre sono stati raccolti a scala di evento campioni di acqua per l’analisi isotopica e geochimica dalla pioggia, dal torrente, dalla falda e dal suolo in 5 punti a diverse profondita’ (nella zona riparia a 10 cm e 20 cm di profondita’; nella zona a meta’ versante a 10 cm e 30 cm di profondita’; nella parte alta del versante a 30 cm di profondita’). La conducibilita’ elettrica e’ stata misurata direttamente in campo utilizzando un conduttimetro. Le concentrazioni isotopiche e ioniche sono state misurate nel laboratorio di Legnaro (Dip. TESAF, Universita’ degli Studi di Padova) rispettivamente tramite spettroscopia laser e cromatografia ionica. L’analisi EMMA rivela che la precipitazione, l’acqua di suolo nella zona riparia e la falda superficiale sono le principali componenti che contribuiscono all’evento di piena. La tecnica di separazione dell’idrogramma a due componenti rivela che il contributo di acqua nuova al torrente aumenta con l’aumentare della pioggia totale e dell’intensita’ di pioggia mentre diminuisce durante condizioni di umidita’ antecedente l’evento umide. Durante gli eventi che avvengono in condizioni di umidita’ secche e che sono caratterizzati da elevate intensita’ di pioggia, l’acqua nuova contribuisce al torrente in maggior misura, soprattutto nelle fasi iniziali dell’evento e in prossimita’ del picco di portata, indicando che l’acqua nuova proviene principalmente dalla pioggia incanalata direttamente nel torrente e dal deflusso superficiale che si forma nella zona riparia. Con l’aumento delle condizioni di umidita’, l’acqua vecchia (di pre-evento) inizia a contribuire maggiormente al torrente, indicando uno sviluppo della connessione sottosuperficiale durante l’evento ed un maggior contributo di acqua di falda proveniente da diverse parti nel bacino. Nella fase intermedia e finale di eventi avvenuti durante periodi umidi e caratterizzati da elevate quantita’ di pioggia, aumenta la componente di acqua nuova nel torrente, aumento dovuto all’espansione della zona satura vicino al torrente. Le differenze riscontrate nel calcolo della componente di acqua nuova usando i traccianti isotopici e geochimici suggeriscono che la pioggia viene arricchita in ioni prima di essere incanalata nel torrente a causa dell’accumulo di ioni nella zona effimera del torrente e negli strati superficiali del suolo.
Batista, Ludmila Vianna. "Desvendando a movimentação da água em área de recarga do Sistema Aquífero Guarani (SAG), utilizando análise hidrológica e traçadores isotópicos /." Rio Claro, 2019. http://hdl.handle.net/11449/183486.
Full textResumo: A necessidade do estudo os diferentes processos do ciclo hidrológico de forma integrada tem se tornado cada vez mais urgente, uma vez que o uso do termo “crise hídrica” se torna cada vez mais frequente. Nesse sentido, a determinação de taxas de recarga e quantificação dos fluxos subterrâneos, aliados ao uso de isótopos estáveis (2H e 18O), que são excelentes traçadores da movimentação da água no ciclo hidrológico, impulsionaram esse estudo, buscando gerar informações científicas fundamentais para uma melhor gestão dos recursos hídricos. Situada numa porção de afloramento do Sistema Aquífero Guarani (SAG), a área de estudo está inserida em uma pequena bacia hidrográfica na porção oeste do estado de São Paulo, onde as águas subterrâneas e superficiais são responsáveis pelo abastecimento de inúmeras cidades da região. O estudo teve como principal objetivo compreender a dinâmica entre os diversos compartimentos do ciclo hidrológico, buscando mudanças nos padrões de precipitação e de recarga subterrânea, por métodos de fácil aplicação, como balanço hídrico e flutuações dos níveis d’água (WTF), bem como a aplicação de traçadores isotópicos (δ2H e δ18O) em diferentes sazonalidades. Ao considerar a sazonalidade dos dados isotópicos na chuva, águas superficiais e subterrâneas, pode-se observar que os valores de δ18O são mais empobrecidos durante a estação chuvosa e mais enriquecidos durante a estação seca. A diferença entre os sinais isotópicos permitiu compreender a movimentação da á... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The need to study the different processes of the hydrological cycle in an integrated way has become increasingly urgent since the use of the term "water crisis" becomes more and more frequent. In this sense, the determination of rates of recharge and quantification of the underground flows, together with the use of stable isotopes (2H and 18O), which are excellent tracers of water movement in the hydrological cycle, stimulated this study, seeking to generate scientific information fundamental to better management of water resources. Located in a portion of the outcrop of the Guarani Aquifer System (SAG), the study area is in a small hydrographic basin in the western portion of the state of São Paulo, where groundwater and surface waters are responsible for the supply of numerous cities located there. The main objective of this study is to understand the dynamics between the various compartments of the hydrological cycle, searching for changes in precipitation and underground recharge patterns, using easy-to-apply methods such as water balance and water level fluctuations (WTF), as well as the application of isotopic tracers (δ2H and δ18O) in different seasonal conditions. When considering the seasonality of the isotopic data in rainfall, surface water, and groundwater, it can be observed that δ18O values are more depleted during the rainy season and more enriched during the dry season. The difference between the isotopic signals allowed to understand the movement of the water... (Complete abstract click electronic access below)
Doutor
Gardner, Christopher Brent. "Rock-Derived Micronutrient Transport across Landscape Units: Hydrologic Flow Path Analysis and Catchment-Scale Transport in the Tropics and Small Mountainous Rivers." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1449157172.
Full textCayuela, Linares Carles. "Ecohydrology of mediterranean headwater catchments the role of forest in the redistribution and isotopic modification of water fluxes." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667405.
Full textThe present dissertation aims to analyse the role of forest cover on the redistribution of water fluxes and improve the current knowledge on hydrological functioning of Mediterranean headwater catchments. This study has been carried out in the Vallcebre research catchments, an area representative of these Mediterranean mountain environments. Continuous measurements of rainfall, throughfall, stemflow, runoff, meteorological data and stable isotopes of water have been used to investigate hydrological processes at different spatio-temporal scales. At the plot scale, the findings obtained from a Scots pine (Pinus sylvestris L.) and downy oak (Quercus pubescens Willd.) forest plots have shown that stemflow, despite being only a small portion of the incident precipitation, is a substantial source of water and particulate matter at the base of trees. Stemflow is the result of a complex combination of biotic and abiotic factors, it increases with the event size but the duration of rainfall, intensity or the evaporative demand highly influence its temporal dynamics. In addition, we have found the size of trees to be the main factor producing differences among individuals of each species. However, between species, main stemflow differences have been attributed to different bark storage capacities and different evaporation rates. Besides, through the analysis of the particles contained in throughfall and stemflow, we have observed that the interaction between particulate matter and vegetative surfaces affects the size and the retention of particles. In general, the presence of leaves in oaks increases the size of particles, and needles of pines enhance its retention. We have also found that Saharan dust events are a substantial source of particulate matter in the study area. Isotopic differences among rainfall, throughfall and stemflow have been observed. Fractionation processes are more evident for events of low rainfall amount, when canopies are not completely saturated. They can be caused by a mixture of factors, for example, evaporation is more likely to have a higher impact at the beginning of rainfall, however, under low evaporation conditions, isotopic exchange (between water and vapour) may acquire more relevance. In addition, for rainfall events with temporal variations of the isotopic composition, the retention of part of the final portion of rainfall on leaves and stems can also produce isotopic differences in both directions, enrichment or depletion. At the catchment scale we have found that, in addition to the isotopic changes produced by canopy interception processes, the isotopic composition of rainfall also varies along an elevation gradient. Throughout the Can Vila catchment and for several runoff events, the effect of the spatio-temporal variability of the input isotopic signal on hydrograph separation results has been tested. Results have shown that although the Isotopic Hydrograph Separations are dominated by pre-event water, for some floods, the pre-event water contribution can differ significantly depending on the single location of the input isotopic signal used. Comparing hydrograph separation results obtained using different single input signals, with results obtained using a catchment scale input isotopic signal, we could determine the most representative sampling location and define a “smart” sampling strategy for improving Isotopic Hydrograph Separations at the small catchment scale. Overall, findings gathered in the present dissertation highlight the role of stemflow as a preferential flow path of water and nutrients that can enhance biogeochemical processes at the base of trees during rainfall events. Results also emphasize that the isotopic variability of rainfall, due to canopy interception processes and elevation gradients, has to be taken into account for a better understanding of the hydrological processes in Mediterranean headwater catchments.
PRIGIOBBE, VALENTINA. "Analysis and application of novel method for quantifying infiltration and exfiltration in urban sewer systems." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2005. http://hdl.handle.net/2108/134.
Full textThis thesis deals with the problem of infiltration of parasitical water (infiltration) and leakage of wastewater (exfiltration) in urban sewer networks. That research has been developed within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems) which partners were INSA de LYON (FR), EAWAG of Zurich (CH), Technological University of Dresden (DE), Faculty of Civil Engineering at University of Prague (CZ), DHI Hydroinform company in Prague (CZ), Hydroprojekt company in Prague (CZ), Middlesex University of London (UK), LNEC in Lisbon (PT), Emschergenossenschaft in Essen (DE) and IRSA-CNR in Rome (IT). That European project was supported by the European Commission under the 5th Framework Programme and it aimed at contributing to the implementation of the Key Action “Sustainable Management and Quality of Water” within the Energy, Environment and Sustainable Development Contract n° EVK1-CT-2000-00072. In particular, that work has been carried out in collaboration with IRSA-CNR and consisted of applying new methods for quantifying infiltration and exfiltration in urban sewer networks (i.e., pipes and house connections) which were developed by a research group of EAWAG. An innovative aspect is that these methods allow monitoring large urban sewer systems due to their speediness and cheapness of these methods. The thesis is subdivided into three chapters, the first one describes the problem and the traditional diagnostic techniques; the second one explains the four applied methods: 1. QUEST method for quantifying exfiltration; 2. QUEST-C method for quantifying exfiltration; 3. pollutograph method for quantifying infiltration; 4. isotopic method for quantifying infiltration. and deals with the theoretical aspects which the methods are based on. QUEST and QUEST-C consisted on a mass balance of chemical tracer injected into sewer pipes to be investigated in a slug and continuous way, respectively. The pollutograph and the isotopic methods based on the hydrograph separation method applied over urban sewer systems using typical wastewater pollutants and 18O water isotope, respectively. The third chapter describes the experimental planning and discusses the results of application of these methods in two urban areas in Rome and reports the results of an uncertainty analysis using Monte Carlo simulations.
Taghavi, Lobat. "Dynamique de transfert des pesticides en périodes de crue sur les bassins versants agricoles gascons." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0098/document.
Full textThe mechanisms of pesticides transport to stream flow were studied in two agricultural nested catchments of different size in Gascogne region (South West of France): the Save river basin at Larra (1110 km2) and the Montoussé experimental watershed at Auradé (3.28 km2). The intensive agricultural practices used in this region lead to an important risk for water resources by pesticides, especially during storm events. This is why we have paid special attention on storm events when a large quantity of contaminant was transported during hydrological periods. Fourteen molecules of pesticides (herbicides and fungicides) were investigated during the study period. Both of these groups are widely used for agricultural purposed in these catchments. The results achieved over the two years monitoring (2007-2009) enable us to emphasize the principal processes, implied in pesticide transfer on these agricultural catchments. The majority of compounds are detected during storm runoff events. And, the average concentrations of some pesticides are exceeded at the authorization limit of the European Union for pesticide concentrations in drinking water (0.1 µg.L-1 for individual pesticides and 0.5 µg.L-1 for total pesticides). To better understand the mechanisms of pesticide transport hysteresis, patterns on the concentration-discharge relationship (result of different concentration of pesticides in rising and falling limb of storm) were studied. However, clockwise or anticlockwise hysteresis patterns could be observed for some molecules of pesticide and their controlling factors such as dissolved organic carbon (DOC), particulate organic carbon (POC) and total suspended matters (TSM) according to their transfer dynamic in the catchment. We proceeded with hydrograph separation of the main stormflow components (surface runoff, subsurface flow and groundwater) so that the main pesticide routing could be traced for its soil-river transfers. We also came to the conclusion that there is a positive relationship between riverine TSM, DOC and pesticide, concentrations and the discharges of surface or subsurface runoffs according to pesticide properties. Pesticide flux calculation shows between 60 to 90% of the molecule transport takes place during storm periods. Specific flux calculation also demonstrated the higher flux value in Save catchment than in Aurade with higher pesticide concentration for a given specific discharge. The latter result may be due to the more consumption of pesticide in Save catchment. The analyses of pesticides both in filtered and unfiltered water enabled us to estimate the distribution of pesticides into particulate and dissolved phases. Moreover, the pesticide flux values allow calculating average partition coefficients kd between dissolved and particulate fractions which present good relationship with Kow values (octanol-water) extracted from literature. The percentage of each pesticide transported as particulate forms is also well correlated to Kow
Tunqui, Neira José Manuel. "Revisiting the concentration-discharge (C-Q) relationships with high-frequency measurements." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS377.
Full textRecent technological advances allow measuring high-frequency chemical concentrations in rivers over long periods. These new data sets, well adapted to the temporal variations of discharge, allows us today to specify the links between hydrological processes in catchments and the water stream chemistry. However, they require the development of adapted methods for data treatment. This thesis tries to answer to the following questions: which models and methods can we use to exploit high-frequency measurements and the way they are transforming our knowledge of the chemical water-quality? During the course of this thesis, we adapted different methods and methodologies originally designed for low / medium frequency data and applied then to high-frequency dataset of the River Lab of the Oracle-Orgeval observatory (France). For many years, since the size of the C-Q datasets was limited, it was difficult to analyse in much detail the precise shape of the C-Q relationship. In many cases, the power-law relationship appeared adequate, which explains its popularity, although many additions to the basic relation have been proposed to improve it. With the advent of high-frequency measuring devices, all the range of the relationship can now be included in the analysis. As a progressive alternative to the power law relationship and a log-log transformation, we propose to use a two-sided affine power scaling relationship. Hydrograph separation is perhaps one of the oldest unsolved problems of hydrology. In the thesis we aim to use jointly the Recursive Digital Filter (RDF) and Mass Balance (MB) methods in order to identify the RDF model parameter leading to the most realistic MB parameters. We show that a simple methodology proposed for the hydrograph separation (RDF-MB coupling approach) works, with a specific calibration and with the simple hypothesis of two sources of path flow. To combine the power-law relationship and the two-component mixing model, we applied the two-side affine power scaling relationship to the so-called base flow and quick flow (Cb and Cq) components, with a multicriterion identification procedure. The new combined model significantly improves, compared to power and mixing models, the simulation of stream river concentrations. Last, we develop a methodology for identifying and quantifying sources from a purely chemical point of view. The new method developed here, without any preliminary assumption on the composition of the potential sources, allows us analyzing the temporal variability of the end-member sources and their relationship to the different flow regimes
KUBEŠ, Ondřej. "Separace odtoku na datech z povodí Jenínského toku za použití různých metod." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-154544.
Full textValdhansová, Klára. "Odtok ze sněhu při událostech deště na sníh v povodí Ptačího potoka vypočtený pomocí stabilních izotopů ve vodě." Master's thesis, 2020. http://www.nusl.cz/ntk/nusl-436454.
Full textRoss, Cody. "Assessment of soil water movement and the relative importance of shallow subsurface flow in a near-level Prairie watershed." 2017. http://hdl.handle.net/1993/32058.
Full textFebruary 2017
ŠVARCOVÁ, Eliška. "Porovnání vybraných metod výpočtu základního odtoku na malém povodí a zhodnocení vlivu základního odtoku na koncentrace fosforu v celkovém odtoku." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-154481.
Full text