Academic literature on the topic 'Hydrology Hydrology Hydrologic models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrology Hydrology Hydrologic models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrology Hydrology Hydrologic models"
Johnson, K. A., and N. Sitar. "Hydrologic conditions leading to debris-flow initiation." Canadian Geotechnical Journal 27, no. 6 (December 1, 1990): 789–801. http://dx.doi.org/10.1139/t90-092.
Full textShen, Chaopeng, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jerad Bales, Fi-John Chang, Sangram Ganguly, et al. "HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community." Hydrology and Earth System Sciences 22, no. 11 (November 1, 2018): 5639–56. http://dx.doi.org/10.5194/hess-22-5639-2018.
Full textDan-Jumbo, Nimi G., and Marc Metzger. "Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta." Hydrology 6, no. 3 (September 17, 2019): 82. http://dx.doi.org/10.3390/hydrology6030082.
Full textTerink, W., A. F. Lutz, G. W. H. Simons, W. W. Immerzeel, and P. Droogers. "SPHY v2.0: Spatial Processes in HYdrology." Geoscientific Model Development 8, no. 7 (July 8, 2015): 2009–34. http://dx.doi.org/10.5194/gmd-8-2009-2015.
Full textManeta, M. P., and N. L. Silverman. "A Spatially Distributed Model to Simulate Water, Energy, and Vegetation Dynamics Using Information from Regional Climate Models." Earth Interactions 17, no. 11 (August 1, 2013): 1–44. http://dx.doi.org/10.1175/2012ei000472.1.
Full textThompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl. "Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene." Hydrology and Earth System Sciences Discussions 10, no. 6 (June 20, 2013): 7897–961. http://dx.doi.org/10.5194/hessd-10-7897-2013.
Full textGuilpart, Etienne, Vahid Espanmanesh, Amaury Tilmant, and François Anctil. "Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models." Hydrology and Earth System Sciences 25, no. 8 (August 30, 2021): 4611–29. http://dx.doi.org/10.5194/hess-25-4611-2021.
Full textHabib, E., Y. Ma, D. Williams, H. O. Sharif, and F. Hossain. "HydroViz: design and evaluation of a Web-based tool for improving hydrology education." Hydrology and Earth System Sciences 16, no. 10 (October 24, 2012): 3767–81. http://dx.doi.org/10.5194/hess-16-3767-2012.
Full textThompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl. "Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene." Hydrology and Earth System Sciences 17, no. 12 (December 12, 2013): 5013–39. http://dx.doi.org/10.5194/hess-17-5013-2013.
Full textPerra, Enrica, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer. "Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment." Hydrology and Earth System Sciences 22, no. 7 (July 30, 2018): 4125–43. http://dx.doi.org/10.5194/hess-22-4125-2018.
Full textDissertations / Theses on the topic "Hydrology Hydrology Hydrologic models"
Thoms, R. Brad. "Simulating fully coupled overland and variably saturated subsurface flow using MODFLOW /." Full text open access at:, 2003. http://content.ohsu.edu/u?/etd,16.
Full textChen, Mi. "Using an integrated linkage method to predict hydrological responses of a mixed land use watershed." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 378 p.; also includes graphics (some col.). Includes bibliographical references (p. 229-252). Available online via OhioLINK's ETD Center
Loaiza, Usuga Juan Carlos. "Soil hydrology in the Ribera Salada Catchment (Catalan PrePyrenees): application of hydrologic models for the estimation of hydrologic transitional regimes." Doctoral thesis, Universitat de Lleida, 2007. http://hdl.handle.net/10803/8235.
Full textafectada per canvis d'ús del sòl, mitjançant el monitoreig d'aquest i de l'aigua superficial. Aquest
objectiu s'ha treballat a partir mesuraments de components del balanç hídric pels diferents tipus de
cobertura i sòl, amb règims d'humitat i temperatura de transició.
Aquest estudi s'ha realitzat a la conca de la Ribera Salada (Prepirineu meridional Català, al NE
d'Espanya), amb una extensió de 222.5 km2, i un interval altitudinal de 420 a 2385 m i predomini de
pendents entre 12 - 25 % i 25 - 50 %. El substrat consisteix en conglomerats calcaris massius, calcilutites
i llims. La precipitació es de 507 i 763 mm. Amb sòls poc profunds, calcaris i pedregosos, essent
majoritàriament Inceptisòls (Typic Calciusteps, Typic Haploustepts) i Entisòls (Typic Ustifluvents, Typic
Udorthortents). A les zones més elevades de la conca, els sòls són més humits, degut a l'augment de la
precipitació, on es produeixen processos de descarbonatació del sòl. L'ús del sòl és majoritàriament
forestal, amb presència d'ecosistemes de ribera, subalpins i vegetació submediterrània. Algunes àrees es
troben amb cultius de patata, cereal i pastures. Una de les característiques més importants d'aquesta
conca són els canvis d'ús del sòl que ha patit en els últims 50 anys degut a l'abandó dels masos i cultius
tradicionals. Es seleccionaren vuit llocs de mostreig considerant les següents cobertes: Quercus ilex, bosc
de ribera, Pinus sylvestris, pastures, cultius (cereal-patata) i Pinus uncinata. A partir de l'any 1997 fins el
2005, s'han anat monitorejant el contingut d'humitat del sòl, l'escolament i els cabals. Des del 2004 s'han
anat anotant dades de drenatge. Les variables meteorològiques es mesuren a l'estació de Lladurs de la
XAC (Xarxa Agrometeorològica de Catalunya).
Els resultats obtenguts durant tres anys mostren una domini del règim d'humitat ústic (SSS, 2006), o xèric
en aquells anys més secs. En la modelització de règims d'humitat i temperatura del sòl, s'utilitzaren els
models de simulació NSM "Newhall simulation model" (Newhall, 1976) i JSM "Jarauta simulation
model" (Jarauta 1989). NSM (Newhall,1976) tendeix a sobre estimar el règim d'humitat del sòl, però
JSM (Jarauta, 1989) simula correctament el règim d'humitat del sòl (SSS, 2006) de la conca, funcionant
millor en condicions intermitges d'humitat del sòl. Ambdós models simulen correctament el règim de
temperatura dels sòls. Predomina un règim de temperatura mèsic-tèrmic, amb tendència a tèrmic els anys
secs. A petita escala la profunditat del sòl, pendent, pedregositat i una alta porositat del sòl són factores
que varien el règim d'humitat del sòl. La informació de sòl i clima, complementada mitjançant SIG, va
permetre l'obtenció de mapes de règim d'humitat del sòl de la conca, a escala 1:50000, els quals
permeten establir mediante simució els règims d'humitat del sòl en diferents escenaris de canvis
meteorològics.
El model TOPLATS ha sigut utilitzat en l'estimació de l'humitat del sòl en diferents usos del sòl. Aquest
model fou calibrat amb les equacions del filtre Kalman estès (EKF), que deriven de la minimització del
quadrat de la diferència entre els valors reals i els estimats (Goegebeur & Pauwels, 2007). Aquesta
metodologia interrelaciona correctament els valors de pluja, humitat del sòl, escolament i infiltració,
essent els valors d'humitat els que més s'aproximen als reals. Els resultats mostren que aquest filtre és
una eina útil per estimar el volum d'aigua del sòl emmagatzemada en conques a escala puntual,
assegurant una aplicació correcta del model hidrològic.
Per la modelització del comportament de l'humitat del sòl i diferents components del balanç hídric
s'utilitzà el modelo TOPLATS (Famiglietti & Wood, 1994). El model de simulació TOPLATS permite
simulà acceptablement el comportament de l'humitat del sòl. Els resultats de infiltració, escolament,
intercepció, evapotranspiració de referència i temperatura del sòl són correctes. Les diferències existents
entre valors simulats i observats són: l'humitat del sòl no sobrepassa el 5%, la infiltració fluctua entre 4%
i 15%, la diferència entre els valors reals i simulats d'evapotranspiració, depèn de l'estació de l'any,
essent 1mm a l'hivern i 2.7 mm a l'estiu. La temperatura varia entre 0.01ºC i 3.5ºC. El model calibrat
prediu amb precisió el comportament de les diferents components del balanç hídric. Respecte als valors
mesurats d'aigua de drenatge correspon al 11-41 % de la pluja total.
Respecte al balanç d'aigua en el sòl (ΔSW), els valors són negatius durant cert període de l'any, arribant a
valors crítics els mesos secs. La recuperació de humitat del sòl durant la resta de mesos succeeix de
manera parcial. A la part mitja de la conca, alguns mesos els valors d'humitat del sòl s'acosten a
condicions de punt de marchites (ecosistema submediterrani). A la part alta de la conca el sòl conserva
humitat (ecosistema subalpí). Els valors de cabal trobats corresponen a aportacions per escolament el
cuals són molt baixos. La majoria de les sortides es deuen a evapotranspiració, intercepció, infiltració i
drenatge (en ordre de importància).
El principal objetivo de esta investigación es estudiar la dinámica hidrológica de una cuenca Mediterránea
afectada por los cambios de uso del suelo, mediante el monitoreo del suelo y el agua superficial. Dicho objetivo
se ha abordado a partir de la medición de componentes del balance hídrico para diferentes tipos de cobertura y
suelo, considerando regimenes de humedad y temperatura de transición.
Este estudio se ha realizado en la cuenca de la Ribera Salada (Prepirineo meridional Catalán, NE España) de
222.5 km2, con un intervalo altitudinal de 420 a 2385 m y predominio de pendientes entre 12 - 25 % y 25 - 50
%. El sustrato consiste en conglomerados calcáreos masivos, calcilutitas y limos. La precipitación anual es de
507 y 763 mm. Los suelos són poco profundos, calcáreos y pedregosos, siendo en su mayoría Inceptisols
(Typic Calciusteps, Typic Haploustepts) y Entisols (Typic Ustifluvents, Typic Udorthortents). En las partes
altas de la cuenca los suelos son más húmedos, debido al aumento de la precipitación, allí ocurren procesos de
descarbonatación del suelo. Predomina el uso forestal, con ecosistemas de ribera, subalpinos y vegetación
submediterránea. Algunas áreas se dedican al cultivo de patatas, cereal y pastos. Una de las características más
importantes de esta cuenca es los importantes cambios de uso del suelo sufridos en los últimos 50 años, debido
al abandono de las masías y cultivos tradicionales.
Se seleccionaron ocho sitios de muestreo, considerando las siguientes coberturas: Quercus ilex, bosque de
ribera, Pinus sylvestris, pastos, cultivo (cereal-patata) y Pinus uncinata. A partir del año 1997 hasta 2005, se
han venido monitoreando el contenido de humedad del suelo, escorrentía y caudales. Desde 2004 se vienen
tomando datos drenaje. Las variables meteorológicas se miden la estación Lladurs perteneciente a la XAC
(Xarxa Agrometeorológica de Cataluña).
Los resultados obtenidos par un period de tres años muestran una predominancia del regimen de humedad
ústico (SSS, 2006), o xérico en los años más secos. Se utilizaron los modelos de simulación NSM "Newhall
simulation model" (Newhall, 1976) y JSM "Jarauta simulation model" (Jarauta 1989) en la modelización de
regimenes de humedad y temperatura del suelo. NSM (Newhall,1976) tiende a sobre estimar el régimen de
humedad del suelo. Por contra, JSM (Jarauta, 1989) simula de forma correcta el régimen de humedad del suelo
(SSS, 2006) presente en la cuenca, funcionando mejor bajo condiciones medias de humedad del suelo. Ambos
modelos simulan de forma correcta el régimen de temperatura de los suelos. Predomina un régimen de
temperatura mésico-térmico, con tendencia a térmico para los años secos. A pequeña escala la profundidad del
suelo, pendiente, pedregosidad y alta porosidad del suelo son factores que hacen variar el régimen de humedad
del suelo. La información de suelo y clima, complementada mediante SIG, permitió obtener mapas de régimen
de humedad del suelo para la cuenca, a una escala 1:50000, los cuales permiten establecer mediante simulación
los regimenes de humedad en el suelo bajo diferentes escenarios de cambios meteorológicos.
El modelo TOPLATS ha sido utilizado en la estimación de la humedad en el suelo para diferentes usos del
suelo. Este modelo fue calibrado con las ecuaciones del filtro Kalman extendido (EKF), que se derivan de la
minimización del cuadrado de la diferencia entre los valores reales y los estimados (Goegebeur & Pauwels,
2007). Esta metodología interrelaciona correctamente los valores de lluvia, humedad en el suelo, escorrentía y
infiltración, siendo los valores de humedad los mas ajustados a los valores reales. Los resultados muestran que
este filtro es una herramienta para estimar el volumen de agua en el suelo almacenada en las cuencas a escala
puntual, asegurando una aplicación correcta del modelo hidrológico.
Para la modelización del comportamiento de la humedad del suelo y los diferentes componentes del balance
hídrico se utilizó el modelo TOPLATS (Famiglietti & Wood, 1994). El modelo de simulación TOPLATS
permite simular aceptablemente el comportamiento de la humedad del suelo. Los resultados para infiltración,
escorrentía, intercepción, evapotranspiración de referencia y temperatura del suelo son correctos. Las
diferencias existentes entre valores simulados y observados son: la humedad del suelo no sobrepasa el 5%, la
infiltración fluctúa entre 4% y 15%, la diferencia entre los valores reales y simulados de evapotranspiración,
depende de la estación del año, siendo 1mm en invierno y 2.7 mm en verano, la temperatura varia entre 0.01 ºC
y 3.5ºC. El modelo calibrado predice con precisión el comportamiento de las diferentes componentes del
balance hídrico. Respecto a los valores medidos para agua de drenaje corresponde al 11-41 % de la lluvia total.
Respecto al balance de agua en el suelo (ΔSW), los valores son negativos para un corto periodo del año,
alcanzando valores críticos en meses secos. La recuperación de humedad del suelo para el resto de los meses
ocurre de manera parcial. En la parte media de la cuenca, para algunos meses los valores de humedad del suelo
son cercanos a condiciones de punto de marchites permanente (ecosistema submediterráneo). En la parte alta
de la cuenca el suelo conserva condiciones intermedias de humedad (ecosistema subalpino). Los valores de
caudal encontrados corresponden a los aportes por escorrentía, los cuales son muy bajos. La mayor parte de las
salidas ocurren por evapotranspiración, intercepción, infiltración y drenaje (en orden de importancia).
The main aim of this research is to study the hydrological dynamics of a Mediterranean mountain basin
affected by land use changes, by means of the monitoring of soil and surface water. This aim has been
reached by measuring and simulating hydric balance components of different soils and under different
vegetational types, considering water and temperature transition regimes.
This research was done in Ribera Salada basin (Catalan Pre Pyrenees, NE Spain), with an area of 222.5
km2, altitudes between 420 and 2385 m, with predominance slopes between 12 - 25 % and 25 - 50 %. The
substrate consists of massive calcareous conglomerates, calcilutites and limestones. Main annual
precipitation are 507 to 763 mm. Soils are shallow, calcareous and stony, being most of them Inceptisols
(Typic Calciusteps, Typic Haploustepts) and Entisols (Typic Ustifluvents, Typic Udorthortents). In the
upper and moister part of the basin soil decarbonatation takes place. Forest use is predominant, going
from brook forest environments to subalpine and submediterranean vegetation. Agricultural uses include
mainly the growing of cereals, potatoes and pastures. One of the most important characteristics in this
basin are the significant soil use changes in the last 50 years, due to the abandonment of farms and
traditional crops.
Eight sites were studied, corresponding to soils under Quercus ilex, brook forest, Pinus sylvestris, pasture,
crops (cereal-potatoes) and Pinus uncinata. From 1997 until 2005, soil moisture, run-off, water flow and
interception were monitored. From 2004 on, drainage data has been recorded. Meteorological variables
were measured by means of a complete Lladurs meteorological station, belonging to XAC (Catalan
Agrometeorological Network).
The obtained results to three years show the predominance of ustic moisture regime (SSS, 2006), or xeric
during the driest years. The simulation models NSM "Newhall simulation model" (Newhall, 1976) and
JSM "Jarauta simulation model" (Jarauta 1989) were used to represent soil moisture and temperature
regimes. NSM estimates a higher level of soil moisture regimes than observed. On the contrary, JSM
simulates correctly soil moisture regimes, working better under intermediate soil moisture conditions.
Both models simulate correctly the soil temperature regimes, being mesic-thermic to thermic during the
driest years. At detailed scale (plot observation), soil depth, slope, stone amount and high soil porosity are
factors that affect the soil moisture regimes. Soil and climate information, implemented through a GIS,
allowed us to obtain soil moisture regime maps of the basin at a 1:50000 scale, which are very useful to
simulate soil moisture regimes in different scenarios of meteorological changes.
The TOPLATS model, when used to estimate soil moisture under different cover types, was calibrated
with Extend Kalman filter (EKF) equations derived through a minimization of the square difference
between the true and estimated model state (Goegebeur & Pauwels, 2007). This methodology interrelates
correctly rainfall, soil moisture, runoff and infiltration. Among them, the obtained soil moisture values
corresponded the best to observed data. The results show that it is a useful tool to estimate soil water
volume stored in basins at a point scale, ensuring a correct application of this hydrological model.
To model soil moisture behaviour and the different hydric balance components, the TOPLATS model
(Famiglietti & Wood, 1994) was used. TOPLATS model simulates correctly the soil moisture behaviour.
The differences between observed and simulated values are the following: soil moisture does not surpass
5%; the infiltration fluctuates between 4% to 15%; in evapotraspiration depends on the season being
between 1 mm in winter to 2.7 mm in summer, soil temperature values difference fluctuates between
0.01ºC and 3.5ºC.The calibrated model predicts precisely the behaviour of different hydric balance
components. The measured water drainage amount is 11-41 % of total rain.
The observed and simulated soil water storage in the basin (ΔSW), has negative values during the driest
months. Soil moisture recovery during the rest of the months is only partial. In the medium part of the
basin, occupied by submediterranean ecosystems, soil moisture values are closer to drought conditions
during some months of the year. In the highest part of the basin (subalpine ecosystems) there are
intermediate soil moisture conditions in dry periods. Most part of water outputs are due to
evapotranspiration, interception, infiltration and drainage, in decreasing order of importance. Run-off
values are very low.
Wang, Ying. "Uncertainty analysis of geomorphologic instantaneous unit hydrograph for hydrosystems reliability evaluation /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20WANG.
Full textMiller, Scott N. "Scale effects of geometric complexity, misclassification error and land cover change in distributed hydrologic modeling." Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_216_sip1_w.pdf&type=application/pdf.
Full textFurman, Alexander. "Steps towards the implementation of ERT for monitoring of transient hydrological processes." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_271_sip1_w.pdf&type=application/pdf.
Full textKeel, Brian Jennings. "The effect of dataset quality and resolution on the application of the land surface hydrologic model TOPLATS to the middle swamp watershed." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20815.
Full textBoyle, Douglas Patrick. "Multicriteria calibration of hydrologic models." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290657.
Full textSharma, Maneesh. "Assessing effect of resolution and rainfall at plot and watershed scales in hydrologic modeling." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1402172481&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textShamir, Eylon. "Use of streamflow indices in hydrologic modeling." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_396_sip1_w.pdf&type=application/pdf.
Full textBooks on the topic "Hydrology Hydrology Hydrologic models"
Hromadka, Theodore V. Hydrologic modeling for the arid southwest United States. Mission Viejo, CA: Lighthouse Publications, 1996.
Find full textUnited States. Soil Conservation Service. Hydrologic analysis report: Hatchie River Basin Special Study, Tennessee and Mississippi. [Washington, D.C.?]: The Service, 1986.
Find full textLiu yu fen bu shi shui wen xue yuan li ji ying yong. Beijing: Ke xue chu ban she, 2008.
Find full textD, Lahm Terry, ed. Practical problems in groundwater hydrology. Upper Saddle River, NJ: Pearson Education, 2006.
Find full textLukes, Martin. Kalibrierung und Sensitivitätsanalyse eines Wasserhaushaltsmodells für Waldstandorte. Freiburg [Breisgau]: Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Abteilung Boden und Umwelt, 2006.
Find full textGasmelseid, Tagelsir Mohamed. Handbook of research on hydroinformatics: Technologies, theories and applications. Hershey, Penn: Information Science Reference, 2010.
Find full textBook chapters on the topic "Hydrology Hydrology Hydrologic models"
Chocat, Bernard. "Urban Hydrology Models." In Mathematical Models, 155–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557853.ch6.
Full textWijayaratne, Lankeswara H., and Paul C. Chan. "Synthetic Flow Generation with Stochastic Models." In Flood Hydrology, 175–85. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3957-8_14.
Full textPark, Hotaek, Yonas Dibike, Fengge Su, and John Xiaogang Shi. "Cold Region Hydrologic Models and Applications." In Arctic Hydrology, Permafrost and Ecosystems, 763–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50930-9_26.
Full textFourmigué, Patrick, and Patrick Arnaud. "Reservoir Models in Hydrology." In Mathematical Models, 397–407. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557853.ch12.
Full textShuttleworth, W. James. "Evaporation Models in Hydrology." In Land Surface Evaporation, 93–120. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3032-8_5.
Full textWilliams, J. R., and J. G. Arnold. "Water Quality Models for Watershed Management." In Water-Quality Hydrology, 217–41. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0393-0_14.
Full textInamdar, Shreeram. "The Use of Geochemical Mixing Models to Derive Runoff Sources and Hydrologic Flow Paths." In Forest Hydrology and Biogeochemistry, 163–83. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1363-5_8.
Full textBobba, A. Ghosh, and Vijay P. Singh. "Assessment of Uncertainty in Non — Point Source Water Quality Models." In Water-Quality Hydrology, 243–64. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0393-0_15.
Full textRaghuwanshi, N. S., R. A. Rastogi, and Santosh Kumar. "Application of Linear System Models for Estimation of Wash Load." In Water-Quality Hydrology, 113–23. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0393-0_8.
Full textBajracharya, K., D. A. Barry, S. Vigneswaran, and A. Das Gupta. "Heavy Metal Adsorption in Soil: Comparison of Bisolute Adsorption Models and Laboratory Experiments." In Water-Quality Hydrology, 19–26. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0393-0_2.
Full textConference papers on the topic "Hydrology Hydrology Hydrologic models"
Hughes, D. A., and T. Mohobane. "Reducing uncertainty in hydrological models using local observed data: examples from South Africa." In BHS 11th National Hydrology symposium. British Hydrological Society, 2012. http://dx.doi.org/10.7558/bhs.2012.ns25.
Full textWagner, Matthias P., Alireza Taravat, and Natascha M. Oppelt. "Particle swarm optimization for assimilation of remote sensing data in dynamic crop models." In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, edited by Christopher M. Neale and Antonino Maltese. SPIE, 2019. http://dx.doi.org/10.1117/12.2532531.
Full textDöpper, Veronika, Alby Duarte Rocha, Tobias Gränzig, Birgit Kleinschmit, and Michael Förster. "Using radiative transfer models for mapping soil moisture content under grassland with UAS-borne hyperspectral data." In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, edited by Christopher M. Neale and Antonino Maltese. SPIE, 2021. http://dx.doi.org/10.1117/12.2600296.
Full textDimitriadou, Stavroula, and Konstantinos G. Nikolakopoulos. "Development of GIS models via optical programming and python scripts to implement four empirical methods of reference and actual evapotranspiration (ETo, ETa) incorporating MODIS LST inputs." In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, edited by Christopher M. Neale and Antonino Maltese. SPIE, 2021. http://dx.doi.org/10.1117/12.2597724.
Full textCadavid, Luis G., Paul Trimble, Ray Santee, Cary White, Alaa Ali, and Jayantha T. B. Obeysekera. "Use of Regional Simulation Models in Operational Hydrology in South Florida." In Specialty Symposium on Integrated Surface and Ground Water Management at the World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40562(267)23.
Full textGarijo, Daniel, Deborah Khider, Varun Ratnakar, Yolanda Gil, Ewa Deelman, Rafael Ferreira da Silva, Craig Knoblock, et al. "An intelligent interface for integrating climate, hydrology, agriculture, and socioeconomic models." In IUI '19: 24th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3308557.3308711.
Full textAshkar, F., and F. Aucoin. "Bivariate Models Constructed by the Marginal Transformation Method: With Applications in Hydrology." In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)254.
Full textXiaodong Song, Guoan Tang, Ling Jiang, Gang Zhang, and Kejian Qian. "A novel parallel depression removing algorithm for hydrology analysis in digital elevation models." In 2012 20th International Conference on Geoinformatics. IEEE, 2012. http://dx.doi.org/10.1109/geoinformatics.2012.6270268.
Full textSteinschneider, S., C. Brown, R. N. Palmer, and D. Ahlfeld. "Hydrology Models for Climate Change Assessment: Inter-Decadal Climate Variability and Parameter Calibration." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)428.
Full textPolebitski, A., S. Steinschneider, R. N. Palmer, C. Brown, and D. Ahlfeld. "Climate Change Response of Three Physically Based Hydrology Models in the Connecticut River Watershed." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)127.
Full textReports on the topic "Hydrology Hydrology Hydrologic models"
Hamill, Daniel D., Jeremy J. Giovando, Chandler S. Engel, Travis A. Dahl, and Michael D. Bartles. Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41360.
Full textPruitt, Bruce. Readily available hydrologic models : pertinence to regulatory application. Engineer Research and Development Center (U.S.), September 2020. http://dx.doi.org/10.21079/11681/38031.
Full textZhang, Zhonglong, and Billy E. Johnson. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1013220.
Full textDeChant, Caleb. Hydrologic Data Assimilation: State Estimation and Model Calibration. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.172.
Full textXu, S., S. K. Frey, A. R. Erler, O. Khader, S J Berg, H. T. Hwang, M V Callaghan, and E. A. Sudicky. Laurentian Great Lakes integrated hydrologic model data package. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328298.
Full textGrasso, D. N. Hydrology of modern and late Holocene lakes, Death Valley, California. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/266705.
Full textKing, Ryan, Ariel Miara, Andrew Glaws, and Jordan Macknick. Improving Short Term Predictability of Hydrologic Models with Deep Learning. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769722.
Full textShen, Chaopeng, Forrest Hoffman, and Chonggang Xu. Integrated parameter and process learning for hydrologic and biogeochemical modules in Earth System Models. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769724.
Full textDowner, Charles W., William F. James, Aaron Byrd, and Gregory W. Eggers. Gridded Surface Subsurface Hydrologic Analysis (GSSHA) Model Simulation of Hydrologic Conditions and Restoration Scenarios for the Judicial Ditch 31 Watershed, Minnesota. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada403459.
Full textBlackett, R. E., M. A. Shubat, C. E. Bishop, D. S. Chapman, C. B. Forster, and C. M. Schlinger. The Newcastle geothermal system, Iron County, Utah: Geology, hydrology, and conceptual model. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7014844.
Full text