Academic literature on the topic 'Hydrometallurgy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrometallurgy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrometallurgy"
Bhargava, Suresh, Mark Pownceby, and Rahul Ram. "Hydrometallurgy." Metals 6, no. 5 (May 23, 2016): 122. http://dx.doi.org/10.3390/met6050122.
Full textHabashi, Fathi. "Hydrometallurgy." Minerals Engineering 11, no. 8 (August 1998): 789–90. http://dx.doi.org/10.1016/s0892-6875(98)80011-3.
Full textPhillips, C. V. "Hydrometallurgy '94." Minerals Engineering 7, no. 11 (November 1994): 1450–51. http://dx.doi.org/10.1016/0892-6875(94)90019-1.
Full textWinand, René. "Chloride hydrometallurgy." Hydrometallurgy 27, no. 3 (December 1991): 285–316. http://dx.doi.org/10.1016/0304-386x(91)90055-q.
Full textChagnes, Alexandre. "Advances in Hydrometallurgy." Metals 9, no. 2 (February 11, 2019): 211. http://dx.doi.org/10.3390/met9020211.
Full textSlater, M. J. "Editorial for Hydrometallurgy." Hydrometallurgy 62, no. 2 (October 2001): 71. http://dx.doi.org/10.1016/s0304-386x(01)00189-x.
Full textDoyle, Fiona M. "Developments in Hydrometallurgy." JOM 40, no. 4 (April 1988): 32–38. http://dx.doi.org/10.1007/bf03259019.
Full textLan, Xinzhe, JiaJun Ke, Qiyuan Chen, and Xicheng Zhao. "Hydrometallurgy in China." Hydrometallurgy 82, no. 3-4 (August 2006): 117. http://dx.doi.org/10.1016/j.hydromet.2006.03.004.
Full textOosterhof, Harald. "Critical Metals Hydrometallurgy." JOM 67, no. 2 (January 13, 2015): 398–99. http://dx.doi.org/10.1007/s11837-014-1289-0.
Full textWang, Qing Kai, Xiao Yu Zou, Shu Wang, Da Kuo He, Yang Zhou, and Jia Zheng Wang. "Process Monitoring of Filter Press in Hydrometallurgy Based on PCA." Applied Mechanics and Materials 738-739 (March 2015): 844–48. http://dx.doi.org/10.4028/www.scientific.net/amm.738-739.844.
Full textDissertations / Theses on the topic "Hydrometallurgy"
Oguh, Ukachukwu I. "Multiphase contacting in PGM hydrometallurgy." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3375/.
Full textZhang, Wensheng. "SO2/O2 as an oxidant in hydrometallurgy." Thesis, Zhang, Wensheng (2000) SO2/O2 as an oxidant in hydrometallurgy. PhD thesis, Murdoch University, 2000. https://researchrepository.murdoch.edu.au/id/eprint/458/.
Full textZhang, Wensheng. "SO2/O2 as an oxidant in hydrometallurgy." Murdoch University, 2000. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20080115.141151.
Full textMatthews, Craig J. "Metal extractants based on benzimidazoles." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297532.
Full textMacLean, Donald William John. "The kinetics of zinc extraction in the di(2-ethylhexyl) phosphoric acid, n-heptane-zinc perchlorate, perchloric acid, water system." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30023.
Full textApplied Science, Faculty of
Materials Engineering, Department of
Graduate
De, Santis Donato. "Hydrogen reduction of lead from Kelex 100." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66077.
Full textForgan, Ross Stewart. "Modification of phenolic oximes for copper extraction." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/2764.
Full textMwewa, Brian. "Upgrading of PGM-rich leach residue by high pressure caustic leaching." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97876.
Full textENGLISH ABSTRACT: There is a lack of clear understanding of the rate of selenium (Se), arsenic (As) and sulphur (S) dissolution during caustic (NaOH) batch leaching of PGM-rich leach residue in the presence of oxygen. This has been a limitation in the optimisation of hydrometallurgical processes for the upgrading of PGM concentrates before refining the precious metals. Conditions to improve the rate of leaching of amphoteric elements while minimizing PGM losses were examined to enhance the performance of the leaching process. Development of intrinsic leaching rate equations represent the core of the overall batch leaching model developed in this study. The robustness of the model was assessed by its ability to accurately simulate the effects of changing operating parameters on the reaction extents. The effects of the interfacial oxygen mass transfer rate and temperature on the leaching rates were therefore also included in the overall model. The first part of the experimental program focussed on the interfacial oxygen mass transfer rate in the test autoclave. This enabled an accurate mathematical description of the interfacial mass transfer rate of the primary oxidant, diatomic oxygen (O2) molecule from the gas to the liquid phase. Mass transfer tests were conducted using the sodium sulphite method at 60°C, 100 kPa oxygen partial pressure and agitation speed of between 500 to 1000 rev/min. Cobalt(II) was used as the catalyst with a concentration range of 1 to 5 mg/L. Oxidation of amphoteric elements was investigated by leaching of PGM-rich leach residue (residue from sulphuric acid leaching of converter matte) in caustic solution. The test work was conducted to determine the intrinsic leaching rates in 0.125, 0.25 and 0.5 mol/L NaOH solutions in the 160° to 190°C temperatures range over a period of 6 hours. Oxygen partial pressure was maintained at 11 atm in the factorial experiments. The effect of oxygen partial pressure was quantified by conducting tests with oxygen partial pressure ranging from 7 to 16 atm. The intrinsic rate constants and activation energies derived from this test work were incorporated in the overall kinetic model to simulate the batch leaching profiles under real plant conditions. During the caustic pressure oxidation of amphoteric elements, the rate of oxidation was rapid during the first 10 minutes and decreased steadily over the course of experiment. The experimental results suggest that the oxidation kinetics are controlled by product layer diffusion with sulphur, selenium and arsenic (Arrhenius) activation energies of 31.8 kJ/mol, 26.1 kJ/mol and 10.7 kJ/mol respectively over the temperature range of 160 to 190°C. The reaction mechanism, as well as the observed kinetic behaviour, is most likely due to the base metal/PGMs hydroxide layer that formed as a result of precipitation. An increase in temperature increased the sulphur and arsenic reaction rates. The selenium reaction rate also increased as the temperature was increased from 160 to 175°C. A further increase in temperature above 175°C did not yield a significant increase in the reaction rate. An increase in the caustic concentration increased the reaction rates of all the elements. Increased oxygen partial pressure also improved the reaction rates, with the most significant change observed for sulphur oxidation; the extent of sulphur oxidation increased from 75 to 85% when oxygen partial pressure was increased from 7 to 16 atm. Reaction orders of 0.25, 0.12 and 0.21 with respect to hydroxide concentration and 0.37, 0.29 and 0.36 with respect to dissolved oxygen concentration were obtained for sulphur, selenium and arsenic respectively. Kinetic models were developed for sulphur, selenium and arsenic extraction. The sulphur and selenium simulation gave better agreement between the experimental and model predicted values, while the arsenic simulation gave a relatively poor prediction of the extractions. The caustic concentration had a notable effect on the dissolution of the PGMs. An increase in the caustic concentration increased the dissolution of platinum, palladium and ruthenium. Ruthenium dissolution also increased with an increase in temperature. To the contrary, platinum and palladium dissolution decreased with an increase in temperature. Rhodium and iridium precipitated and did not report in the solution phase while osmium could not be traced. The oxygen partial pressure did not have a significant effect on the dissolution rate of platinum, palladium and ruthenium.
AFRIKAANSE OPSOMMING: Daar is ‘n tekort aan die begrip van die tempo van seleen (Se), arseen (As) en swawel (S) oplosbaarheid gedurende bytsoda (NaOH) enkelladingsloging van platinum groep metaal (PGM)-ryk oorskot materiaal in die teenwoordigheid van suurstof. Hierdie inligting word benodig wanneer die optimisering van tipiese hidrometallurgiese prosesse wat PGM oorskot materiaal opgradeer verlang word. Hierdie bytsoda druklogingsproses vind tipies voor raffinering van die PGM metale plaas. Kondisies wat die tempo van amfoteriese element-loging verbeter, terwyl die PGM verliese geminimaliseer word, was in hierdie werk geondersoek om sodoende die effektiwiteit van die logingsproses te verbeter. Die ontwikkeling van intrinsieke logingtempo vergelykings vorm die kern van die algemene enkelladingsloging model wat ontwikkel was. Die robuustheid van hierdie model word geevalueer op sy vermoë om akkuraat die effekte van veranderende bedryfstelsel parameters op die logingstempo van betrokke reaksies te simuleer. Die effekte van suurstof tussenvlak massaoordrag en temperatuur was ook in die algehele model ingesluit. Die eerste deel van die eksperimentele program het gefokus op die suurstof tussenvlak massaoordrag in die outoklaaf. ‘n Akkurate wiskundige model wat die massaoordrag van die primêre oksidant, diatomiese suurstof (O2), van die gas fase na die vloeistof fase beskryf, was gebruik om die suurstof oordragtempo te kwantifiseer. Suurstof massaoordrag toetse het van die natrium sulfiet metode gebruik gemaak by 60°C, 100 kPa suurstof parsiële druk en tussen 500 en 1000 rev/min roerspoed. Kobalt(II) het gedien as katalis wat tussen 1 tot 5 mg/L gevarieer was. Die amfoteriese element oksidasie was volgende ondersoek deur die PGM-ryk oorskot materiaal te loog met bytsoda (wat stroomop onderwerp was aan swawelsuur loging van omskakelaar mat). Die toetswerk wou die intrinsieke logingtempo’s met 0.125, 0.25 en 0.5 mol/L NaOH oplossings by temperature 160 en 190°C oor 6 uur residensie tyd vasstel. Die suurstof parsiële druk was konstant gehou op 11 atm in hierdie faktoriale eksperimente. Die effek van suurstof parsiële druk was apart vasgestel, deur die suurstof parsiële druk te varieër vanaf 6 tot 16 atm. Die intrinsieke tempokonstantes en aktiveringsenergieë wat in hierdie toetswerk afgelei is, was in ‘n algehele kinetiese model ingekorporeer wat die enkellading logingsprofiele gesimuleer het by aanleg kondisies. Die tempo van oksidasie was vinnig in die eerste 10 minute en het geleidelik afgeplat, gedurende die bytsoda druk oksidasie van amfoteriese elemente. Die eksperimentele resultate suggereer dat produklaagdiffusie die oksidasie kinetika beheer met swawel, seleen en arseen (Arrhenius) aktiveringsenergieë as volg bereken in die temperatuur interval 160 tot 190°C: 31.8 kJ/mol, 26.1 kJ/mol en 10.7 kJ/mol. Die reaksie meganisme en kinetiese gedrag word hoogs waarskynlik veroorsaak deur die onedelmetaal/PGM hidroksied laag wat deur middel van presipitasie gevorm het. Temperatuur toename het die swawel en arseen se reaksietempo’s verhoog. Met seleen het die reaksietempo met temperatuur toename tussen 160 en 175°C ook verhoog, maar afplatting het by 175°C opwaarts plaasgevind. Oor die algemeen het die bytsoda konsentrasie die amfoteriese elemente se reaksietempo’s verhoog. Die verhoging van die suurstof parsiële druk het ook die reaksietempo’s verhoog. Swawel oksidasie het van 75 tot 85% verhoog vanaf 6 tot 16 atm, wat die mees noemenswaardige verandering was. Swawel, seleen en arseen reaksieordes van 0.25, 0.12 en 0.21 met hidroksied konsentrasie en 0.37, 0.29 en 0.36 met opgeloste suurstof konsentrasie het die beste paslyn op die eksperimentele data tot gevolg gehad. Hierdie data was gebruik om die kinetiese modelle van swawel, seleen en arseen ekstraksie te ontwikkel. Terwyl swawel en seleen ‘n goeie paslyn vir die eksperimentele data tot gevolg gehad het, kon passing van arseen ekstraksie nie ‘n goeie model oplewer nie. Varierende bytsoda konsentrasie het ‘n noemenswaardige effek op die PGM ontbinding gehad. Wanneer die bytsoda se konsentrasie vermeerder word, los daar meer platinum, palladium en rutenium op. Rutenium ontbinding het tydens ‘n temperatuur toename verhoog. In kontras het platinum en palladium ontbinding velaag tydens temperatuur toename. Rodium en iridium het gepresipiteer en was nie ontbind nie. Osmium kon nie gemeet word nie. Die suurstof parsiële druk het nie ‘n noemenswaardige effek op platinum, palladium en rutenium ontbinding gehad nie.
Bezuidenhout, Chandon. "An electrochemical reduction process for the recovery of copper powder from a refinery effluent stream." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/24393.
Full textNesbitt, Allan Bernard. "A study of the decay of acid cationic ion exchange resin." Doctoral thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/24496.
Full textBooks on the topic "Hydrometallurgy"
Free, Michael L. Hydrometallurgy. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88087-3.
Full textFree, Michael L. Hydrometallurgy. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118732465.
Full textHydrometallurgy, International Symposium on Computational Analysis in. Computational analysis in hydrometallurgy: 35th Annual Hydrometallurgy Meeting. Montreal, QC: Canadian Institute of Mining, Metallurgy and Petroleum, 2007.
Find full textHabashi, Fathi. Textbook of hydrometallurgy. Sainte-Foy, Québec: Métallurgie extractive Québec, 1993.
Find full textGupta, C. K. Hydrometallurgy in extraction processes. Boca Raton, FL: CRC Press, 1990.
Find full textYoung, Courtney, Akram Alfantazi, Corby Anderson, Amy James, David Dreisinger, and Bryn Harris, eds. Electrometallurgy and Environmental Hydrometallurgy. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/9781118804407.
Full text1945-, Mukherjee T. K., ed. Hydrometallurgy in extraction processes. Boca Raton, Fla: CRC Press, 1990.
Find full text1940-, Dutrizac J. E., and Monhemius A. J. 1942-, eds. Iron control in hydrometallurgy. Chichester: E. Horwood, 1986.
Find full text1921-, Cooper W. Charles, Dreisinger D. B. 1958-, Peters Ernest 1926-, and Ernest Peters International Symposium (1992 : Vancouver, B.C.), eds. Hydrometallurgy: Theory and practice. Amsterdam: Elsevier, 1992.
Find full text1921-, Cooper W. Charles, Dreisinger D. B. 1958-, Peters Ernest 1926-, and Ernest Peters International Symposium (1992 : Vancouver, B.C.), eds. Hydrometallurgy: Theory and practice. Amsterdam: Elsevier, 1992.
Find full textBook chapters on the topic "Hydrometallurgy"
Gomez, Carlos Frias. "Hydrometallurgy." In Encyclopedia of Mineral and Energy Policy, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-40871-7_28-1.
Full textTao, Qi, and Xu Kuangdi. "Hydrometallurgy." In The ECPH Encyclopedia of Mining and Metallurgy, 1–4. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1415-1.
Full textShamsuddin, Mohammad. "Hydrometallurgy." In Physical Chemistry of Metallurgical Processes, Second Edition, 429–529. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58069-8_11.
Full textFrias Gomez, Carlos. "Hydrometallurgy." In Encyclopedia of Mineral and Energy Policy, 328–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-47493-8_28.
Full textXiangrong, Xia, Zhu Shoukang, Yang Wenheng, and Xu Kuangdi. "Copper Hydrometallurgy." In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_578-1.
Full textEvans, James W., and Lutgard C. De Jonghe. "Hydrometallurgy and Electrometallurgy." In The Production and Processing of Inorganic Materials, 281–320. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48163-0_9.
Full textLakshmanan, V. I., M. A. Halim, and Shiv Vijayan. "Chemical Processing: Hydrometallurgy." In Innovative Process Development in Metallurgical Industry, 91–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21599-0_5.
Full textRai, J. P. N., and Shweta Saraswat. "Hydrometallurgy and Biomining." In Green Technologies for Waste Management, 247–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003279136-12.
Full textAdjemian, Alain. "EU R&D activity and strategy for sustainable development in the mineral industries." In Hydrometallurgy ’94, 3–11. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1214-7_1.
Full textSwash, P. M., and A. J. Monhemius. "Hydrothermal precipitation from aqueous solutions containing iron(III), arsenate and sulphate." In Hydrometallurgy ’94, 177–90. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1214-7_10.
Full textConference papers on the topic "Hydrometallurgy"
"Hydrometallurgy and bioprocessing." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-87.
Full textSudibyo, A. Junaedi, A. S. Handoko, U. Herlina, Darmansyah, and T. Wiranti. "The laterite hydrometallurgy wastewater treatment using electrocoagulation method." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001934.
Full textFerrarese, Andre, Elio Augusto Kumoto, Luciana Assis Gobo, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório, and Denise Espinosa. "FLEXIBLE HYDROMETALLURGY PROCESS FOR ELECTRIC VEHICLE BATTERY RECYCLING." In SAE BRASIL 2022 Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2022-36-0072.
Full textSolozhenkin, P., V. Nebera, N. Lyalikova-Medvedeva, and V. Larin. "Biomodification of mineral surfaces in mineral processing and hydrometallurgy." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-110.
Full textTakaya, Yutaro, Koichiro Fujinaga, and Yasuhiro Kato. "HYDROMETALLURGY METHOD OF REY-RICH MUD - CHEMICAL LEACHING AND SEPARATION -." In 113th Annual GSA Cordilleran Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017cd-292767.
Full textSudibyo, Darmansyah, A. Junaedi, A. S. Handoko, F. K. Mufakhir, F. Nurjaman, M. Amin, Y. I. Supriyatna, S. Sumardi, and P. Salsabila. "Nickel recovery from electrocoagulation sludge of hydrometallurgy wastewater using electrowinning." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001929.
Full textXiaoqing, Zhu. "Hydrometallurgy Process Control Based on Optimization Hierarchy and Fieldbus Technologies." In 2010 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.287.
Full textLu, Jiawei, Aimin An, Yuwei Qin, and Qianqian Wang. "Modeling of Electrowinning Process in Zinc Hydrometallurgy Based on COMSOL." In 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2022. http://dx.doi.org/10.1109/iccsse55346.2022.10079791.
Full text"Cobalt and Nickel Separation in Hydrometallurgy using Clinoptilolite as Ion- Exchanger." In Nov. 27-28, 2017 South Africa. EARES, 2017. http://dx.doi.org/10.17758/eares.eap1117002.
Full textLiu, Yan, Fuli Wang, Yuqing Chang, and Shuyu Cai. "Operating performance assessment based on GMM-GPR for gold hydrometallurgy processes." In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407679.
Full text