Academic literature on the topic 'Hydrothermal time'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrothermal time.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrothermal time"
Arruda, Maria Cecília de, Angelo Pedro Jacomino, Ana Luíza Pinheiro, Rafael Vasconcelos Ribeiro, Michelle Antonio Lochoski, and Raquel Capistrano Moreira. "Hydrothermal treatment favors peeling of 'Pera' sweet orange fruit and does not alter quality." Scientia Agricola 65, no. 2 (April 2008): 151–56. http://dx.doi.org/10.1590/s0103-90162008000200007.
Full textSutarno, Sutarno, and Yateman Arryanto. "PHASE TRANSFORMATION IN THE FORMATION OF FAUJASITE FROM FLY ASH." Indonesian Journal of Chemistry 5, no. 3 (June 15, 2010): 278–82. http://dx.doi.org/10.22146/ijc.21804.
Full textKamitani, Masataka, Toru Tagami, Takashi Fukaya, Mitsunori Kondo, Tomonori Hiki, and Atsushi Nakahira. "Synthesis of A-Type Zeolite from Flat Glass Recycle by Hydrothermal Treatments and its Evaluation." Key Engineering Materials 616 (June 2014): 183–87. http://dx.doi.org/10.4028/www.scientific.net/kem.616.183.
Full textYun, Hong, Zhi Guo Zhang, Qun Jie Xu, and Chen Ying Tan. "Enhanced Anticorrosion Properties of SnO2 Coatings in Simulated PEMFC Environments by Hydrothermal Treatment." Advanced Materials Research 860-863 (December 2013): 793–96. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.793.
Full textChoi, Chan Yang, and Jai Won Byeon. "Nondestructive Reliability Monitoring of Zirconia Degraded under Hydrothermal Condition." Applied Mechanics and Materials 249-250 (December 2012): 968–71. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.968.
Full textLin, Wen-Hao, Shiuh-Ke Jang Jean, and Chii-Shyang Hwang. "Phase formation and composition of Mn–Zn ferrite powders prepared by hydrothermal method." Journal of Materials Research 14, no. 1 (January 1999): 204–8. http://dx.doi.org/10.1557/jmr.1999.0030.
Full textYeh, William W. ‐G, Leonard Becker, Shi‐Qian Hua, De‐Pu Wen, and Jian‐Min Liu. "Optimization of Real‐Time Hydrothermal System Operation." Journal of Water Resources Planning and Management 118, no. 6 (November 1992): 636–53. http://dx.doi.org/10.1061/(asce)0733-9496(1992)118:6(636).
Full textNaversen, Christian Øyn, Arild Helseth, Bosong Li, Masood Parvania, Hossein Farahmand, and João P. S. Catalão. "Hydrothermal scheduling in the continuous-time framework." Electric Power Systems Research 189 (December 2020): 106787. http://dx.doi.org/10.1016/j.epsr.2020.106787.
Full textSrilai, Suphada, Worapak Tanwongwal, Kobchai Onpecth, Thanapat Wongkitikun, Gasidit Panomsuwan, Masayoshi Fuji, and Apiluck Eiad-Ua. "Influence of Crystallization Time for Synthesis of Zeolite A and Zeolite X from Natural Kaolin." Key Engineering Materials 824 (October 2019): 231–35. http://dx.doi.org/10.4028/www.scientific.net/kem.824.231.
Full textWang, Jing, Shi Jun, and Xu Bing. "The Effects of Hydrothermal Time on the Microstructure of Hollow Sphere Boehmite." Advanced Materials Research 295-297 (July 2011): 440–45. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.440.
Full textDissertations / Theses on the topic "Hydrothermal time"
McKeogh, Brendan James. "Chemical Changes in Hydrothermal Carbon with Reaction Time." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/1029.
Full textBair, Necia Beck. "A Hydrothermal After-ripening Time Model of Seed Dormancy Loss in Bromus tectorum." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/533.
Full textBair, Necia B. "A hydrothermal after-ripening time model of seed dormancy loss in Bromus tectorum /." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd487.pdf.
Full textJay, Julien P. A. "Modelling the germination of Buddleia Davidii under constant conditions with the hydrothermal time concept." Thesis, University of Canterbury. Forestry, 2006. http://hdl.handle.net/10092/1100.
Full textKöchy, Martin, and Katja Tielbörger. "Hydrothermal time model of germination : parameters for 36 Mediterranean annual species based on a simplified approach." Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2007/1240/.
Full textKeimungsgeschwindigkeit und Anteil gekeimter Samen lassen sich gut mit dem Hydrothermalzeit-Modell bestimmen. Dessen vier Parameter Hydrothermalzeit, Mindesttemperatur, Mindestbodenfeuchte und Streuung der Mindestbodenfeuchte müssen jedoch durch aufwendige Keimungsversuche bei Kombinationen von mehreren Temperatur- und Feuchtigkeitsstufen bestimmt werden. Für manche Anwendungen des Hydrothermalzeit-Modells sind aber ungefähre Werte für viele Arten wichtiger als genaue Werte für wenige Arten. Wenn die Mindesttemperatur und die Streuung der Mindestfeuchte aus Veröffentlichungen und Expertenwissen geschätzt würde, können die Hydrothermalzeit und Mindestbodenfeuchte aus vorhandenen Daten von Keimungsversuchen mit nur einer Temperatur- und Feuchtigkeitsstufe berechnet werden. Wir haben unseren Ansatz auf einen Keimungsversuch zum Vergleich der Keimungsquote wilder einjähriger Arten entlang eines Trockenheitsgradienten in Israel angewendet. Mit diesem Ansatz bestimmten wir die Hydrothermalzeit und Mindestfeuchtigkeit von 36 Arten. Der Vergleich mit genauen Werten für drei Arten zeigt, dass mit unserem Ansatz Hydrothermalzeit-Parameter einfach und effektiv bestimmt werden können. Hydrothermalzeit und Mindestfeuchtigkeit sollten auch bestimmte klimabedingte Keimungsstrategien anzeigen. Deshalb testeten wir, ob diese zwei Parameter mit dem Klima am Ursprungsort der Samen zusammenhängen. Wir fanden jedoch keinen für alle Arten übereinstimmenden Zusammenhang, so dass die Unterschiede vermutlich stärker durch standörtliche als durch klimatische Ursachen hervorgerufen werden.
Lassi, U. (Ulla). "Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for Euro IV Emission Limits:effect of Ageing Atmosphere, Temperature and Time." Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514269543.
Full textLeleu, Thomas. "Variabilité spatio-temporelle de la composition des fluides hydrothermaux (observatoire fond de mer EMSO-Açores, Lucky Strike) : traçage de la circulation hydrothermale et quantification des flux chimiques associés." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30023/document.
Full textThis thesis present a detailed study of the composition of high temperature fluid from the Lucky Strike hydrothermal field (37°N, Mid Ocean Ridge) collected during three sampling campaigns within the framework of the deep sea observatory EMSO-Azores. The hydrothermal field has developped around a fossil lava lake framed by three ancient volcanic cones. In 2013, the discovery of a new active site to the East of the system, and presenting an unprecedented fluid composition at Lucky Strike (low Cl concentration and high Fe and Mn concentration), lead to a new model of hydrothermal circulation based on chemical geothermobarometer (Si; Si-Cl) and geothermometer (Fe-Mn) applied to 13 venting sites. We defined 5 groups of sites based on their chlorinity and location around the lava lake. It appears that vapor-dominated Capelinhos fluids were extracted relatively fast from the phase separation zone (estimated at ~2600mbsf). Nevertheless, fluids in the vicinity of the lava lake, both vapor and brine dominated, display P and T conditions of equilibration lower than for Capelinhos fluids. This highlights on-going equilibration process through conductive cooling and/or brine entrainment in the upflow zone up to the layer 2A of the oceanic crust. Chlorinity variations highlight the varying residence time in the upflow of the fluids between vents which depends on physical characteristics of the crust. We studied the temporal variability of fluid composition collected between 2009 and 2015. Two time scales have been evidenced. The first is the sampling scale, i.e. ~1h, and corresponds to subsurface processes indicating that a hydrothermal fluid, conductively cooled (T<150°C), was stored in the porous substratum close to the discharge. The second is at the scale of the year. It shows fluctuations of P and T conditions in the phase separation and different degree of alteration of the substratum in the reaction zone. Intersites variations of Ca/Na ratios (proxies for albitisation) are related to phase separation expected the South Eastern sites that display a more altered substratum. To avoid this issue, we use Li and Sr isotopes which are not affected phase separation. Li concentration and isotopic composition indicates that basalt substratum is relatively fresh with W/R ratio close to 1 calculated for all groups with d7Li of fluid equivalent to substratum. Sr concentration and isotopic composition suggest higher W/R ratio (~7-8) because of seawater Sr partially removed in the recharge. Moreover, other parameters are at play such as secondary mineral formation (albite, anhydrite) during water rock interaction in the greenschist facies. Because the basalt is relatively fresh, the low metal content in the fluid around the lava lake is due to storage, in the subsurface, of approximately ~60-70% of Fe that is mobilized in the reaction zone compared to Fe-Mn rich Capelinhos fluids. Furthermore, the Cl variability from the fluids at Lucky Strike brings a unique opportunity to study the REE distribution from the reaction zone to the discharge into the deep ocean. We show that the LREE are preferentially concentrated into the brine phase. Furthermore, the Eu is linked to the Sr geochemical cycle. Dissolved REE from buoyant plume fluids highlight a scavenging effect. The Nd isotopic compositions indicate redissolution process. This Nd isotopes modification of the deep seawater is similar to the process of "boundary exchange" that occurs at the ocean/continents interface. Considering the global distribution of submarine hydrothermalism, the Nd modification at the ridge could have an impact on the global Nd cycle in the oceans and act as a "ridge exchange"
Moore, Tommy S. "Time-series electrochemical studies in the lower Delaware Bay and at the 9 degrees 50' north East Pacific Rise hydrothermal vent field." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 137 p, 2009. http://proquest.umi.com/pqdweb?did=1654491241&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textLehto, Heather L. "Self-Potential Anomalies and CO2 Flux on Active Volcanoes: Insights from Time and Spatial Series at Masaya, Telica, and Cerro Negro, Nicaragua." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002108.
Full textWeinzierl, Christoph [Verfasser], and Karsten [Akademischer Betreuer] Haase. "Mantle melting and hydrothermal circulation at spreading ridges - constraints on the major controls on global element cycles in space and time / Christoph Weinzierl. Gutachter: Karsten Haase." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1083259490/34.
Full textBooks on the topic "Hydrothermal time"
Kadko, David. RADON-222 as a real-time tracer of hydrothermal activity on the Gorda Ridge. Portland, Or: The Dept., 1986.
Find full textKadko, David. RADON-222 as a real-time tracer of hydrothermal activity on the Gorda Ridge. Portland, Or: The Dept., 1986.
Find full textO'Connor, John M. The evolution of south Atlantic hot spot systems: An integrated geochronological and geochemical investigation. 1991.
Find full textChavez, Erick H. Detailed space-time-level analysis of miocene hydrothermal Zn-Ag-Au mineralization and alteration, Virginia Area, Huancavelica, Central Peru. 2003, 2003.
Find full textBook chapters on the topic "Hydrothermal time"
Park, Il Song, T. G. Woo, Min Ho Lee, Tae Sung Bae, and Kyeong Won Seol. "Surface Characteristics of the Anodized and Hydrothermally Treated Titanium Affected by the Current Density, Voltage, and Time." In Advanced Materials and Processing IV, 63–66. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-466-9.63.
Full textAlsemgeest, Jitse, and Luis F. Auqué. "Effect of initial water composition on thermodynamic modeling of hydrothermal alteration in basalt—A case study of the Vargeão Dome impact structure." In Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.2550(25).
Full textBerner, Robert A. "Atmospheric O2 over Phanerozoic Time." In The Phanerozoic Carbon Cycle. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195173338.003.0008.
Full textRickard, David. "Geochemistry of Framboids." In Framboids, 169–90. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190080112.003.0009.
Full textPhu, Nguyen Huu, Dinh Quang Khieu, and Dang Tuyet Phuong. "The influence of aging time of hydrothermal synthesis on textural properties of Fe-SBA-15 materials." In From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference, 1975–80. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)81088-3.
Full textKaliannan, Jagatheesan, Anand Baskaran, and Nilanjan Dey. "Automatic Generation Control of Thermal-Thermal-Hydro Power Systems with PID Controller Using Ant Colony Optimization." In Renewable and Alternative Energy, 761–78. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1671-2.ch023.
Full textWeintraub, David A. "Chasing Martians." In Life on Mars, 261–70. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691209258.003.0016.
Full textIqbal, Prahara, Dicky Muslim, Zufialdi Zakaria, Haryadi Permana, Arifan Jaya Syahbana, Nugroho Aji Satriyo, Yunarto Yunarto, Jakah Jakah, and Nur Khoirullah. "Tropical Volcanic Residual Soil." In Volcanology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98285.
Full textRickard, David. "Introduction." In Framboids, 1–20. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190080112.003.0001.
Full textRickard, David. "Framboid Sizes." In Framboids, 21–46. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190080112.003.0002.
Full textConference papers on the topic "Hydrothermal time"
Zulkifli, Zulfa Aiza, Khairunisak Abdul Razak, and Wan Nordiana Wan Abdul Rahman. "Effect of hydrothermal reaction time on size of bismuth oxide nanoparticles synthesized via hydrothermal method." In ADVANCED MATERIALS FOR SUSTAINABILITY AND GROWTH: Proceedings of the 3rd Advanced Materials Conference 2016 (3rd AMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.5010448.
Full textWan, Feifei, Yong Yin, and Xiaoxi Zhang. "Real-Time Simulation of Deep-Sea Hydrothermal Fluid." In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019. http://dx.doi.org/10.1109/vr.2019.8798305.
Full textSarrazin, J., P. M. Sarradin, E. Buffier, A. Christophe, G. Clodic, D. Desbruyeres, Y. Fouquet, et al. "A real-time dive on active hydrothermal vents." In OCEANS 2007 - Europe. IEEE, 2007. http://dx.doi.org/10.1109/oceanse.2007.4302321.
Full textJaruwat, Dolrudee, Parncheewa Udomsap, Nuwong Chollacoop, Masayoshi Fuji, and Apiluck Eiad-ua. "Effects of hydrothermal temperature and time of hydrochar from Cattail leaves." In INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY OF EMERGING MATERIALS: Proceedings of the Second International Conference on Science and Technology of Emerging Materials 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5053192.
Full textJang*, Hangilro, Hannuree Jang, and Hee Joon Kim. "IP effects on time-domain electromagnetic responses of deep-sea hydrothermal deposits." In SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. http://dx.doi.org/10.1190/segam2015-5825918.1.
Full textOvstebo, Mari Lund, Christian Oyn Naversen, Arild Helseth, and Hossein Farahmand. "Continuous-time scheduling of a hydrothermal system with integration of offshore wind power." In 2020 17th International Conference on the European Energy Market (EEM). IEEE, 2020. http://dx.doi.org/10.1109/eem49802.2020.9221980.
Full textJang, H., H. Jang, and H. J. Kim. "Feasibility of a Time-domain Electromagnetic Survey for Mapping Deep-sea Hydrothermal Deposits." In 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413070.
Full textTreistman, F., M. E. P. Maceira, J. M. Damazio, and C. B. Cruz. "Periodic Time Series Model with Annual Component Applied to Operation Planning of Hydrothermal Systems." In 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2020. http://dx.doi.org/10.1109/pmaps47429.2020.9183472.
Full textHaryanto, Samuel Andar, and Yano Surya Pradana. "Hydrothermal liquefaction of low-lipid microalgae Tetraselmis chuii: Effect of temperature and reaction time." In 3RD INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0062474.
Full textArai, Rei, Natsumi Iwasa, Naoki Nakatani, and Tetsuo Yamazaki. "Method for In-Situ Determination of Concentration of Components in Hydrothermal Environments." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79306.
Full textReports on the topic "Hydrothermal time"
Trent, D. S., and L. L. Eyler. TEMPEST: A three-dimensional time-dependence computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions: Revision 2. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6396990.
Full text