To see the other types of publications on this topic, follow the link: Hydrous Ruthenium oxide.

Journal articles on the topic 'Hydrous Ruthenium oxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrous Ruthenium oxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, H. S., W. Z. Peng, and Yu Li Lin. "Atomic Structure of Hydrous Ruthenium Oxide Coating on Ti and CNT Substrate by Cathodic Deposition Method." Advanced Materials Research 79-82 (August 2009): 895–98. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.895.

Full text
Abstract:
In this study, hydrous ruthenium oxide was deposited on titanium(Ti) and carbon nanotube(CNT) substrate by cathodic deposition method. Combination of amorphous and nanocrystalline structure of hydrous ruthenium oxide was investigated by high resolution electron microscopy. The measured capacitance was found keeping nearly constant through charge/discharge processes for hydrous ruthenium oxide coating on Ti substrate. On the other hand, thin and uniform layer of hydrous ruthenium oxide coating can be deposited on CNT substrate. The thickness of the coating layer was found less than 10nm. Combin
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Yu Li, W. Z. Peng, and Cheng Yi Hsu. "Hydrous Ruthenium Oxide Coating on SWCNT Substrate for the Electrode of Supercapacitor." Advanced Materials Research 123-125 (August 2010): 699–702. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.699.

Full text
Abstract:
In this study, single-wall carbon nanotube (SWCNT) mixed with hydrous ruthenium oxide was co-deposited on titanium substrate by cathodic deposition method. Titanium substrate was first cleaned thoroughly by acetone and followed by chemical etching of 5%HF for 5 minutes and 50%HCl for 15 minutes. The purpose of acid etching is to increase the adhesion between the coating layer and the Ti substrate. SWCNT has been dispersed by ultrasonic method to avoid agglomeration during deposition processes. The concentration of SWCNT added in the deposition process was 0.05 wt%. The time of specimens which
APA, Harvard, Vancouver, ISO, and other styles
3

Jow, T. R., and J. P. Zheng. "Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide." Journal of The Electrochemical Society 145, no. 1 (1998): 49–52. http://dx.doi.org/10.1149/1.1838209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Chi-Chang, Ming-Jue Liu, and Kuo-Hsin Chang. "Anodic deposition of hydrous ruthenium oxide for supercapacitors." Journal of Power Sources 163, no. 2 (2007): 1126–31. http://dx.doi.org/10.1016/j.jpowsour.2006.09.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Zhiru, Jim P. Zheng, and Riqiang Fu. "Solid state NMR investigation of hydrous ruthenium oxide." Chemical Physics Letters 331, no. 1 (2000): 64–70. http://dx.doi.org/10.1016/s0009-2614(00)01169-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Yan-Yu, Hu Lin Li, and Xiao-Gang Zhang. "Solid state synthesis of hydrous ruthenium oxide for supercapacitors." Journal of Power Sources 173, no. 1 (2007): 599–605. http://dx.doi.org/10.1016/j.jpowsour.2007.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Riqiang, Zhiru Ma, and Jim P. Zheng. "Proton NMR and Dynamic Studies of Hydrous Ruthenium Oxide." Journal of Physical Chemistry B 106, no. 14 (2002): 3592–96. http://dx.doi.org/10.1021/jp013860q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, Sanghyun, Lichun Liu, Sang-Hoon Yoo, Ho-Young Jang, and Sungho Park. "Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes." Bulletin of the Korean Chemical Society 34, no. 5 (2013): 1462–66. http://dx.doi.org/10.5012/bkcs.2013.34.5.1462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramani, Manikandan, Bala S. Haran, Ralph E. White, and Branko N. Popov. "Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors." Journal of The Electrochemical Society 148, no. 4 (2001): A374. http://dx.doi.org/10.1149/1.1357172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tao, Haisheng, Wei Zhu, Yangyang Fang, Zhaojun Sun, and Xiaoyu Li. "Construction and Capacitance of Hydrous Ruthenium Oxide-Titanate Nanotube Matrix." Nanoscience and Nanotechnology Letters 6, no. 6 (2014): 497–501. http://dx.doi.org/10.1166/nnl.2014.1795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zheng, J. P., P. J. Cygan, and T. R. Jow. "Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors." Journal of The Electrochemical Society 142, no. 8 (1995): 2699–703. http://dx.doi.org/10.1149/1.2050077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hu, Chi‐Chang, and Yao‐Huang Huang. "Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors." Journal of The Electrochemical Society 146, no. 7 (1999): 2465–71. http://dx.doi.org/10.1149/1.1391956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Yaomin, Ling Liu, Juan Xu, Jie Yang, Manming Yan, and Zhiyu Jiang. "High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites." Journal of Solid State Electrochemistry 11, no. 2 (2006): 283–90. http://dx.doi.org/10.1007/s10008-006-0105-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhao, Yaomin, Ling Liu, Juan Xu, Jie Yang, Manming Yan, and Zhiyu Jiang. "High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites." Journal of Solid State Electrochemistry 11, no. 3 (2006): 449. http://dx.doi.org/10.1007/s10008-006-0166-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Jie, Youlong Xu, Liang Li, and Jun Lin. "Hydrous ruthenium oxide prepared by steam-assisted thermolysis: Capacitance and stability." Solid State Ionics 268 (December 2014): 312–15. http://dx.doi.org/10.1016/j.ssi.2014.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ganguly, Bichitra Nandi, Buddhadeb Maity, Tapan Kumar Maity, et al. "l-Cysteine-Conjugated Ruthenium Hydrous Oxide Nanomaterials with Anticancer Active Application." Langmuir 34, no. 4 (2018): 1447–56. http://dx.doi.org/10.1021/acs.langmuir.7b01408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Walker, Jeremy, R. Bruce King, and Rina Tannenbaum. "Sol–gel synthesis of hydrous ruthenium oxide nanonetworks from 1,2-epoxides." Journal of Solid State Chemistry 180, no. 8 (2007): 2290–97. http://dx.doi.org/10.1016/j.jssc.2007.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wen, Jianguo, and Zhentao Zhou. "Pseudocapacitance characterization of hydrous ruthenium oxide prepared via cyclic voltammetric deposition." Materials Chemistry and Physics 98, no. 2-3 (2006): 442–46. http://dx.doi.org/10.1016/j.matchemphys.2005.09.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jang, Jong H., Sangjin Han, Taeghwan Hyeon, and Seung M. Oh. "Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes." Journal of Power Sources 123, no. 1 (2003): 79–85. http://dx.doi.org/10.1016/s0378-7753(03)00459-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zheng, Jim P. "Proton Transfer and Storage Behavior in Nanoparticles of Hydrous Ruthenium Oxide." ECS Transactions 6, no. 25 (2019): 147–57. http://dx.doi.org/10.1149/1.2943233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ju, Young-Wan, Gyoung-Rin Choi, Hong-Ryun Jung, Chan Kim, Kap-Seung Yang, and Wan-Jin Lee. "A Hydrous Ruthenium Oxide-Carbon Nanofibers Composite Electrodes Prepared by Electrospinning." Journal of The Electrochemical Society 154, no. 3 (2007): A192. http://dx.doi.org/10.1149/1.2426898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hu, Chi-Chang, Wei-Chun Chen, and Kuo-Hsin Chang. "How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors." Journal of The Electrochemical Society 151, no. 2 (2004): A281. http://dx.doi.org/10.1149/1.1639020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jang, Jong H., Akiko Kato, Kenji Machida, and Katsuhiko Naoi. "Supercapacitor Performance of Hydrous Ruthenium Oxide Electrodes Prepared by Electrophoretic Deposition." Journal of The Electrochemical Society 153, no. 2 (2006): A321. http://dx.doi.org/10.1149/1.2138672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ma, Jun-Hong, Yuan-Yuan Feng, Jie Yu, Dan Zhao, An-Jie Wang, and Bo-Qing Xu. "Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation." Journal of Catalysis 275, no. 1 (2010): 34–44. http://dx.doi.org/10.1016/j.jcat.2010.07.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Stroud, R. M., J. W. Long, K. E. Swider, and D. R. Rolison. "Improved Methanol Oxidation Activity Through Oxidation-Induced Phase Separation of PtRu Electrocatalysts." Microscopy and Microanalysis 6, S2 (2000): 24–25. http://dx.doi.org/10.1017/s143192760003261x.

Full text
Abstract:
Direct methanol fuel cells (DMFCs) offer a simpler, safer technology for point-of-use power sources compared to other hydrogen fuel cells, by avoiding the need to store hydrogen fuel or to carry out the reformation of hydrocarbons. The direct methanol oxidation electrocatalyst of choice is a nanoscale black consisting of a 50:50 atom % mixture of Pt and Ru. It has recently become known that these presumed bimetallic alloys in fact contain an array of metal, oxide and hydrous phases, which are easily misidentified in routine x-ray diffraction measurements due to particle size-broadening and poo
APA, Harvard, Vancouver, ISO, and other styles
26

Zheng, Yan-Zhen, Hai-Yang Ding, and Mi-Lin Zhang. "Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors." Thin Solid Films 516, no. 21 (2008): 7381–85. http://dx.doi.org/10.1016/j.tsf.2008.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jeong, Myung-Gi, Kai Zhuo, Serhiy Cherevko, Woo-Jae Kim, and Chan-Hwa Chung. "Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors." Journal of Power Sources 244 (December 2013): 806–11. http://dx.doi.org/10.1016/j.jpowsour.2012.12.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yuan, Changzhou, Linrui Hou, Diankai Li, Long Yang, and Jiaoyang Li. "Enhanced Supercapacitance of Hydrous Ruthenium Oxide/Mesocarbon Microbeads Composites toward Electrochemical Capacitors." International Journal of Electrochemistry 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/714092.

Full text
Abstract:
A facile hydrothermal strategy was proposed to synthesize RuO2⋅nH2O/mesocarbon microbeads (MCMBs) composites. Further physical characterizations revealed that RuO2⋅nH2O nanoparticles (NPs) were well dispersed upon the surfaces of the MCMB pretreated in 6 M KOH solution. Electrochemical data indicated that the RuO2⋅nH2O/MCMB composites owned higher electrochemical utilization of RuO2species, better power property, and better electrochemical stability, compared with the single RuO2phase. The good dispersion of RuO2⋅nH2O NPs and enhanced electronic conductivity made the H+ions and electrons easil
APA, Harvard, Vancouver, ISO, and other styles
29

Panić, V., T. Vidaković, S. Gojković, A. Dekanski, S. Milonjić, and B. Nikolić. "The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol." Electrochimica Acta 48, no. 25-26 (2003): 3805–13. http://dx.doi.org/10.1016/s0013-4686(03)00514-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Feng-Jiin. "Polyaniline-supported platinum-hydrous ruthenium oxide nanocomposite as electrocatalyst for methanol oxidation." Polymer Composites 30, no. 10 (2009): 1473–79. http://dx.doi.org/10.1002/pc.20715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ZHENG, J. P., P. J. CYGAN, and T. R. JOW. "ChemInform Abstract: Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors." ChemInform 26, no. 47 (2010): no. http://dx.doi.org/10.1002/chin.199547024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

McKenzie, Katy J., and Frank Marken. "Electrochemical Characterization of Hydrous Ruthenium Oxide Nanoparticle Decorated Boron-Doped Diamond Electrodes." Electrochemical and Solid-State Letters 5, no. 9 (2002): E47. http://dx.doi.org/10.1149/1.1497515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barranco, V., F. Pico, J. Ibañez, et al. "Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide." Electrochimica Acta 54, no. 28 (2009): 7452–57. http://dx.doi.org/10.1016/j.electacta.2009.07.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lin, Na, Jianhua Tian, Zhongqiang Shan, Kuan Chen, and Wenming Liao. "Hydrothermal synthesis of hydrous ruthenium oxide/graphene sheets for high-performance supercapacitors." Electrochimica Acta 99 (June 2013): 219–24. http://dx.doi.org/10.1016/j.electacta.2013.03.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hu, Chi-Chang, and Kwang-Huei Chang. "Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide." Electrochimica Acta 45, no. 17 (2000): 2685–96. http://dx.doi.org/10.1016/s0013-4686(00)00386-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Panić, V., A. Dekanski, S. Lj Gojković, V. B. Mišković-Stanković, and B. Nikolić. "The Influence of Oxide Sol Properties on the Capacitive Behaviour of Carbon Supported Hydrous Ruthenium Oxide." Materials Science Forum 453-454 (May 2004): 133–38. http://dx.doi.org/10.4028/www.scientific.net/msf.453-454.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kvastek, K., and V. Horvat-Radošević. "Electrochemical properties of hydrous ruthenium oxide films formed and measured at different potentials." Journal of Electroanalytical Chemistry 511, no. 1-2 (2001): 65–78. http://dx.doi.org/10.1016/s0022-0728(01)00562-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Hansung, and Branko N. Popov. "Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method." Journal of Power Sources 104, no. 1 (2002): 52–61. http://dx.doi.org/10.1016/s0378-7753(01)00903-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Jianrong, Dechen Jiang, Bin Chen, Junjie Zhu, Liping Jiang, and Huiqun Fang. "Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor." Journal of The Electrochemical Society 148, no. 12 (2001): A1362. http://dx.doi.org/10.1149/1.1417976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Il-Hwan, and Kwang-Bum Kim. "Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications." Journal of The Electrochemical Society 153, no. 2 (2006): A383. http://dx.doi.org/10.1149/1.2147406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Zhenguo, Xinping Qiu, Bin Lu, Shichao Zhang, Wentao Zhu, and Liquan Chen. "Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells." Electrochemistry Communications 7, no. 6 (2005): 593–96. http://dx.doi.org/10.1016/j.elecom.2005.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Hongfang, Ruoding Wang, and Rong Cao. "Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor." Microporous and Mesoporous Materials 111, no. 1-3 (2008): 32–38. http://dx.doi.org/10.1016/j.micromeso.2007.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Feng, Jing Chen, Qinghong Zhang, and Ye Wang. "Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines." Green Chemistry 10, no. 5 (2008): 553. http://dx.doi.org/10.1039/b715627h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

ZHANG, JIAN-RONG, BIN CHEN, WEI-KUAN LI, JUN-JIE ZHU, and LI-PING JIANG. "ELECTROCHEMICAL BEHAVIOR OF AMORPHOUS HYDROUS RUTHENIUM OXIDE/ACTIVE CARBON COMPOSITE ELECTRODES FOR SUPER-CAPACITOR." International Journal of Modern Physics B 16, no. 28n29 (2002): 4479–83. http://dx.doi.org/10.1142/s0217979202015650.

Full text
Abstract:
The RuO 2· xH 2 O/C composites were prepared directly based on a sol-gel process under ultrasonic wave (50Hz). The specific capacitance of pure RuO 2· xH 2 O materials obtained by the method reached a value of 760F/g. Physical properties of the material and electrochemical characteristics of electrodes were described.
APA, Harvard, Vancouver, ISO, and other styles
45

Deshmukh, P. R., S. N. Pusawale, A. D. Jagadale, and C. D. Lokhande. "Supercapacitive performance of hydrous ruthenium oxide (RuO2·nH2O) thin films deposited by SILAR method." Journal of Materials Science 47, no. 3 (2011): 1546–53. http://dx.doi.org/10.1007/s10853-011-5946-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hu, Chi-Chang, Ming-Jue Liu, and Kuo-Hsin Chang. "Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO− concentration, plating temperature, and oxide loading." Electrochimica Acta 53, no. 6 (2008): 2679–87. http://dx.doi.org/10.1016/j.electacta.2007.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yin, Ya Jiang, Xiao Feng Wang, Wu Shuang Lu, Xiang Yu Li, and Zheng You. "Fabrication and Properties of a New Type Micro Super-Capacitor." Key Engineering Materials 562-565 (July 2013): 102–7. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.102.

Full text
Abstract:
A new type of micro super-capacitor with high working voltage, high over loading, small bulk, and low impedance was fabricated by a new process. The hydrous ruthenium oxide powder was prepared in a solution of RuCl3·xH2O and NaHCO3. Different composites loaded with certain amount of carbon black were synthesized with this technique. Super-capacitor performance was assessed via cyclic voltammetry (CV), charge-discharge studies (DC), and impedance analysis (AC). The results show that the capacitance and resistivity of ruthenium oxide materials were dependent on the sample annealing temperature.
APA, Harvard, Vancouver, ISO, and other styles
48

SUGIMOTO, Wataru, Toshiaki OHTA, Katsunori YOKOSHIMA, and Yoshio TAKASU. "Evaluation of the Redox Behavior of Hydrous Ruthenium Oxides: Effect of Temperature and Acid Concentration on the Electrochemical Behavior of Layered Ruthenium Oxide." Electrochemistry 75, no. 8 (2007): 645–48. http://dx.doi.org/10.5796/electrochemistry.75.645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Xiao-feng, Zheng You, and Dian-bo Ruan. "Hydrous Ruthenium Oxide with High Rate Pseudo-Capacitance Prepared by a New Sol-Gel Process." Chinese Journal of Chemical Physics 19, no. 4 (2006): 341–46. http://dx.doi.org/10.1360/cjcp2006.19(4).341.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Permana, Antonius Dimas Chandra, Agung Nugroho, Hong-Shik Lee, et al. "SYNTHESIS OF HYDROUS RUTHENIUM OXIDE NANOPARTICLES IN SUB- AND SUPERCRITICAL WATER AND THEIR CAPACITIVE PROPERTIES." Chemical Engineering Communications 201, no. 10 (2014): 1259–69. http://dx.doi.org/10.1080/00986445.2013.805127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!