To see the other types of publications on this topic, follow the link: Hyperbolic 3-manifolds.

Dissertations / Theses on the topic 'Hyperbolic 3-manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 27 dissertations / theses for your research on the topic 'Hyperbolic 3-manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Koundouros, Stilianos. "Hyperbolic 3-manifolds." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agol, Ian. "Topology of hyperbolic 3-manifolds /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9906477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuhlmann, Sally Malinda. "Geodesic knots in hyperbolic 3 manifolds." Connect to thesis, 2005. http://repository.unimelb.edu.au/10187/916.

Full text
Abstract:
This thesis is an investigation of simple closed geodesics, or geodesic knots, in hyperbolic 3-manifolds.<br>Adams, Hass and Scott have shown that every orientable finite volume hyperbolic 3-manifold contains at least one geodesic knot. The first part of this thesis is devoted to extending this result. We show that all cusped and many closed orientable finite volume hyperbolic 3-manifolds contain infinitely many geodesic knots. This is achieved by studying infinite families of closed geodesics limiting to an infinite length geodesic in the manifold. In the cusped manifold case the limiting geodesic runs cusp-to-cusp, while in the closed manifold case its ends spiral around a short geodesic in the manifold. We show that in the above manifolds infinitely many of the closed geodesics in these families are embedded.<br>The second part of the thesis is an investigation into the topology of geodesic knots, and is motivated by Thurston’s Geometrization Conjecture relating the topology and geometry of 3-manifolds.We ask whether the isotopy class of a geodesic knot can be distinguished topologically within its homotopy class. We derive a purely topological description for infinite subfamilies of the closed geodesics studied previously in cusped manifolds, and draw explicit projection diagrams for these geodesics in the figure-eight knot complement. This leads to the result that the figure-eight knot complement contains geodesics of infinitely many different knot types in the3-sphere when the figure-eight cusp is filled trivially.<br>We conclude with a more direct investigation into geodesic knots in the figure-eight knot complement. We discuss methods of locating closed geodesics in this manifold including ways of identifying their isotopy class within a free homotopy class of closed curves. We also investigate a specially chosen class of knots in the figure-eight knot complement, namely those arising as closed orbits in its suspension flow. Interesting examples uncovered here indicate that geodesics of small tube radii may be difficult to distinguish topologically in their free homotopy class.
APA, Harvard, Vancouver, ISO, and other styles
4

Cremaschi, Tommaso. "Hyperbolic 3-manifolds of infinite type:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108468.

Full text
Abstract:
Thesis advisor: Ian Biringer<br>In this thesis we study the class of 3-manifolds that admit a compact exhaustion by hyperbolizable 3-manifolds with incompressible boundary and such that the genus of the boundary components of the elements in the exhaustion is uniformly bounded. For this class we give necessary and sufficient topological conditions that guarantee the existence of a complete hyperbolic metric<br>Thesis (PhD) — Boston College, 2019<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
5

Masters, Joseph David. "Lengths and homology of hyperbolic 3-manifolds /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Millichap, Christian R. "Mutations and Geometric Invariants of Hyperbolic 3-Manifolds." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/321918.

Full text
Abstract:
Mathematics<br>Ph.D.<br>The main goal of this thesis is to examine the quality of geometric invariants of finite volume hyperbolic 3-manifolds. In particular, we examine how to construct large classes of hyperbolic 3-manifolds that are geometrically similar: they have a number of geometric invariants that are the same, but are non-isometric. Large classes of geometrically similar hyperbolic 3-manifolds provide examples where the minimal geometric data needed to determine M must be quite large. For our constructions, we will use a cut and paste operation known as mutation. Ruberman has shown that mutations of hyperelliptic surfaces inside hyperbolic 3-manifolds preserve volume. Here, we provide geometric and topological conditions under which such mutations also preserve the initial length spectrum. This work requires us to analyze when least area surfaces could intersect short geodesics in a hyperbolic 3-manifold. As a corollary of this result, we show that the number of hyperbolic knot complements with the same volume and the same initial length spectrum grows at least factorially fast with the volume and the number of twist regions; a similar statement holds for closed hyperbolic 3-manifolds, obtained via Dehn surgery. Furthermore, we show that the knot complements used for this construction are pairwise incommensurable by analyzing their cusp shapes.<br>Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
7

De, Capua Antonio. "Hyperbolic volume estimates via train tracks." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:426f7186-e881-482b-90d8-5cbb9b9a38b7.

Full text
Abstract:
In this thesis we describe how to estimate the distance spanned in the pants graph by a train track splitting sequence on a surface, up to multiplicative and additive constants. If some moderate assumptions on a splitting sequence are satisfied, each vertex set of a train track in it will represent a vertex of a graph which is naturally quasi-isometric to the pants graph; moreover the splitting sequence gives an edge-path in this graph so, more precisely, our distance estimate holds between the extreme points of this path. The present distance estimate is inspired by a result of Masur, Mosher and Schleimer for distances in the marking graph. However, we can apply their line of proof only after some manipulation of the splitting sequence: a rearrangement, changing the order the elementary moves are performed in, so that the ones producing Dehn twists are brought together; and then an untwisting, which suppresses the majority of these latter moves to give a new sequence, which does not end with the same track as before, but does not include any portion that is almost stationary in the pants graph. The required distance is then, up to constants, the number of splits occurring in the untwisted sequence. A consequence of our main theorem together with a result of Brock is that, given a pseudo-Anosov self-diffeomorphism ψ of a surface S, the maximal splitting sequence introduced by Agol gives us an estimate for the hyperbolic volume of the mapping torus built from S and ψ. There are also some interesting consequences for the hyperbolic volume of a solid torus minus a closed braid, via a machinery employed by Dynnikov and Wiest.
APA, Harvard, Vancouver, ISO, and other styles
8

Burton, Stephan Daniel. "Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3307.

Full text
Abstract:
Adams conjectured that unknotting tunnels of tunnel number 1 manifolds are always isotopic to a geodesic. We generalize this question to tunnel number n manifolds. We find that there exist complete hyperbolic structures and a choice of spine of a compression body with genus 1 negative boundary and genus n ≥ 3 outer boundary for which (n−2) edges of the spine self-intersect. We use this to show that there exist finite volume one-cusped hyperbolic manifolds with a system of n tunnels for which (n−1) of the tunnels are homotopic to geodesics arbitrarily close to self-intersecting. This gives evidence that the generalization of Adam's conjecture to tunnel number n ≥ 2 manifolds may be false.
APA, Harvard, Vancouver, ISO, and other styles
9

Ruffoni, Lorenzo. "Cube Complexes and Virtual Fibering of 3-Manifolds." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5637/.

Full text
Abstract:
Una 3-varietà si dice virtualmente fibrata se ammette un rivestimento finito che è un fibrato con base una circonferenza e fibra una superficie. In seguito al lavoro di geometrizzazione di Thurston e Perelman, la generica 3-varietà risulta essere iperbolica; un recente risultato di Agol afferma che una tale varietà è sempre virtualmente fibrata. L’ingrediente principale della prova consiste nell’introduzione, dovuta a Wise, dei complessi cubici nello studio delle 3-varietà iperboliche. Questa tesi si concentra sulle proprietà algebriche e geometriche di queste strutture combinatorie e sul ruolo che esse hanno giocato nella dimostrazione del Teorema di Fibrazione Virtuale.
APA, Harvard, Vancouver, ISO, and other styles
10

Rushton, Brian Craig. "Subdivision Rules, 3-Manifolds, and Circle Packings." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2985.

Full text
Abstract:
We study the relationship between subdivision rules, 3-dimensional manifolds, and circle packings. We find explicit subdivision rules for closed right-angled hyperbolic manifolds, a large family of hyperbolic manifolds with boundary, and all 3-manifolds of the E^3,H^2 x R, S^2 x R, SL_2(R), and S^3 geometries (up to finite covers). We define subdivision rules in all dimensions and find explicit subdivision rules for the n-dimensional torus as an example in each dimension. We define a graph and space at infinity for all subdivision rules, and use that to show that all subdivision rules for non-hyperbolic manifolds have mesh not going to 0. We provide an alternate proof of the Combinatorial Riemann Mapping Theorem using circle packings (although this has been done before). We provide a new definition of conformal for subdivision rules of unbounded valence, show that the subdivision rules for the Borromean rings complement are conformal and show that barycentric subdivision is almost conformal. Finally, we show that subdivision rules can be degenerate on a dense set, while still having convergent circle packings.
APA, Harvard, Vancouver, ISO, and other styles
11

Crawford, Thomas. "A Stronger Gordon Conjecture and an Analysis of Free Bicuspid Manifolds with Small Cusps." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:107938.

Full text
Abstract:
Thesis advisor: Robert Meyerhoff<br>Thurston showed that for all but a finite number of Dehn Surgeries on a cusped hyperbolic 3-manifold, the resulting manifold admits a hyperbolic structure. Global bounds on this number have been set, and gradually improved upon, by a number of Mathematicians until Lackenby and Meyerhoff proved the sharp bound of 10, which is realized by the figure-eight knot exterior. We improve this result by proving a stronger version of Gordon’s conjecture: that excluding the figure-eight knot exterior, cusped hyperbolic 3-manifolds have at most 8 non-hyperbolic Dehn Surgeries. To do so we make use of the work of Gabai et. al. from a forthcoming paper which parameterizes measurements of the cusp, then uses a rigorous computer aided search of the space to classify all hyperbolic 3-manifolds up to a specified cusp size. Their approach hinges on the discreteness of manifold points in the parameter space, an assumption which cannot be made if the manifolds have infinite volume. In this paper we also show that infinite-volume manifolds, which must be Free Bicuspid, can have cusp volume as low as 3.159. As such, these manifolds are a concern for any future expansion of the approach of Gabai et. al<br>Thesis (PhD) — Boston College, 2018<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
12

Ramos, Álvaro Krüger. "Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/118222.

Full text
Abstract:
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio.<br>We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
APA, Harvard, Vancouver, ISO, and other styles
13

Rodríguez, Migueles José Andrés. "Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S021.

Full text
Abstract:
Grâce au théorème d'hyperbolisation, nous savons précisément quand une variété de dimension trois compacte admet une métrique hyperbolique. Par ailleurs, d'après le théorème de rigidité de Mostow, cette structure géométrique est unique. Cependant, trouver des liens pratiques entre la géométrie et la topologie est un problème difficile. La plupart des résultats décrits dans cette thèse visent à concrétiser ces liens. Toute géodésique fermée orientée dans une surface hyperbolique admet un relèvement canonique dans le fibré tangent unitaire de la surface, et on peut donc le voir comme un nœud dans une variété de dimension trois. Les extérieurs des nœuds ainsi construits admettent une structure hyperbolique. Cette thèse a pour objet d'estimer le volume des extérieurs des relèvements canoniques. Pour toute surface hyperbolique on construit une suite de géodésique sur la surface, tel que les extérieurs associées ne sont pas homéomorphes entre elles et dont la suite des volumes respectifs est bornée. Aussi on minore le volume de l'extérieur à l'aide d'un réel explicite qui décrit une relation entre la géodésique et une décomposition en pantalons de la surface. Ceci donne une méthode pour construire une suite de géodésiques dont les volumes des extérieurs associées sont minorées en termes de la longueur de la géodésique correspondant. Dans le cas particulier de la surface modulaire, on obtient des estimations du volume de l'extérieur en termes de la période de la fraction continue associée à la géodésique<br>Due to the Hyperbolization Theorem, we know precisely when does a given compact three dimensional manifold admits a hyperbolic metric. Moreover, by the Mostow's Rigidity Theorem this geometric structure is unique. However, finding effective and computable connections between the geometry and topology is a challenging problem. Most of the results on this thesis fit into the theme of making the connections more concrete. To every oriented closed geodesic on a hyperbolic surface has a canonical lift on the unit tangent bundle of the surface, and we can see it as a knot in a three dimensional manifold. The knot complement given in this way has a hyperbolic structure. The objective of this thesis is to estimate the volume of the canonical lift complement. For every hyperbolic surface we give a sequence of geodesics on the surface, such that the knot complements associated are not homeomorphic with each other and the sequence of the corresponding volumes is bounded. We also give a lower bound of the volume of the canonical lift complement by an explicit real number which describes a relation between the geodesic and a pants decomposition of the surface. This give us a method to construct a sequence of geodesics where the volume of the associated knot complements is bounded from below in terms of the length of the corresponding geodesic. For the particular case of the modular surface, we obtain estimations for the volume of the canonical lift complement in terms of the period of the continuous fraction expansion of the corresponding geodesic
APA, Harvard, Vancouver, ISO, and other styles
14

Shannon, Mario. "Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK035.

Full text
Abstract:
Cette thèse porte sur les chirurgies de Dehn et les structures différentielles associées aux flots d'Anosov transitifs en dimension trois. Les flots d'Anosov constituent une classe très importante des systèmes dynamiques, par leurs propriétés chaotiques persistantes par perturbations, autant que par leur riche interaction avec la topologie de la variété ambiante. Bien que beaucoup soient connus sur le comportement dynamique et ergodique de ces flots, il n'y a pas une compréhension assez claire sur la classification de ses différentes classes d'équivalence orbitale. Jusqu'à ce moment, les plus grands progrès ont été fait en dimension trois, où il y une famille de techniques pour la construction d'exemples de flot d'Anosov connue comme chirurgies.Pendant la réalisation de cette thèse, dans un premier temps nous nous sommes intéressés à une chirurgie en particulier, connue comme la chirurgie de Goodman. Cette procédure consiste à choisir une orbite périodique du flot et réaliser une chirurgie de Dehn autour de cette orbite, adaptée au flot d'une façon telle qu'on obtient une nouvelle variété munie d'un flot d'Anosov. La problématique que soulève cette technique est que, pour la réalisation de la chirurgie, un des paramètres à choisir est une surface plongée dans la 3-variété et un difféomorphisme défini sur elle. De ce fait, l'espace de paramètres est, a priori, de dimension infinie et, pourtant, ce n'est pas facile d'avoir un contrôle sur la classe d'équivalence du flot obtenu par cette méthode. Il existe une deuxième procédure, qui peut-être interprétée comme une version infinitésimale de celle qui précède, connue comme la chirurgie de Fried. Celle-ci consiste à éclater l'orbite périodique, obtenant de ce fait un flot défini sur une variété à bord, puis collapser cette composante de bord d'une façon non-triviale et produire un nouveau flot. Cette chirurgie produit des flots univoquement définis, mais ceux-ci ne sont pas munis d'une structure hyperbolique naturelle. Ils sont, par construction, flots topologiquement d'Anosov.Notre contribution consiste à montrer que, si on assume de plus que les flots sont transitifs, alors une chirurgie de Goodman et une chirurgie de Fried autour de la même orbite périodique produisent des flots équivalents, à égal élection de paramètres entiers.Dans un second temps nous avons travaillé sur une question un peu plus abstraite, mais qui est naturellement liée à certaines procédures techniques dans la construction de flots hyperboliques. C'est le problème de savoir si tout flot dit topologiquement d'Anosov (i.e. expansif et qui satisfait la propriété de shadowing de Bowen correspond à un flot hyperbolique différentiable, à équivalence orbitale près. Dans le cas particulier où le flot est transitif, il est connu depuis très longtemps qu'il peut être muni d'une structure non-uniformément hyperbolique définie dans le complémentaire d'un ensemble fini d'orbites périodiques. La plus grande difficulté est de construire des modèles (globalement) hyperboliques associés au flot original.Dans ce contexte, notre contribution consiste à montrer que tout flot topologiquement d'Anosov et transitif, défini dans une variété de dimension trois, est orbitalement équivalent à un flot d'Anosov lisse<br>The present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.During the realization of this thesis, in a first time we have been interested in a particular surgery method, known as the Goodman surgery. This method consists in make a Dehn surgery on a chosen periodic orbit, but adapted to the flow, in such a way to obtain a new manifold equipped with an Anosov flow. For making this surgery, one of the parameters that has to be chosen is an embedded surface in the 3-manifold and a diffeomorphism defined on it. Thus, the parameter space is, a priori, of infinite dimension and it is not easy to have control on the orbital equivalence class of the obtained flow. There exists a second method, that can be interpreted as an infinitesimal version of the previous one, known as the Fried surgery. It consists in making a blow-up of the flow along the periodic orbit, obtaining in this way a flow in a manifold with boundary, for then blowing-down the boundary component in a non-trivial way and produce a new flow. This surgery produces flows defined in a unique way, but they are not equipped with a natural uniformly hyperbolic structure. They are, by construction, topological Anosov flows.Our contribution is to show that, if we assume that the flow is transitive, then a Goodman surgery or a Fried surgery performed on a periodic orbit produce orbitally equivalent flows, for the same choice of integer parameters.In a second time, we have been interested for a more abstract question, but which is also related to some technical issues in the construction of hyperbolic flows. It is the problem of determining if every topologically Anosov flow (i.e. expansive and satisfying the Bowen shadowing property) correspond to a smooth hyperbolic flow, up to orbital equivalence. In the particular case that the flow is transitive, it has been known that there exists a non-uniformly hyperbolic structure defined in the complement of a finite set of periodic orbits. The main difficulty is the construction of (global) hyperbolic models associated to the original flow.In this setting, our contribution is to show that every transitive topologically Anosov flow on a closed manifold is orbital equivalent to a smooth Anosov flow
APA, Harvard, Vancouver, ISO, and other styles
15

Dufour, Guillaume. "Cubulations de variétés hyperboliques compactes." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00690334.

Full text
Abstract:
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée.
APA, Harvard, Vancouver, ISO, and other styles
16

Garza, César. "Examples of hyperbolic knots with distance 3 toroidal surgeries in S³." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gardam, Giles. "Encoding and detecting properties in finitely presented groups." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0c8a7009-7e04-4f66-911b-298ad87061fb.

Full text
Abstract:
In this thesis we study several properties of finitely presented groups, through the unifying paradigm of encoding sought-after group properties into presentations and detecting group properties from presentations, in the context of Geometric Group Theory. A group law is said to be detectable in power subgroups if, for all coprime m and n, a group G satisfies the law if and only if the power subgroups G(<sup>m</sup>) and G(<sup>n</sup>) both satisfy the law. We prove that for all positive integers c, nilpotency of class at most c is detectable in power subgroups, as is the k-Engel law for k at most 4. In contrast, detectability in power subgroups fails for solvability of given derived length: we construct a finite group W such that W(<sup>2</sup>) and W(<sup>3</sup>) are metabelian but W has derived length 3. We analyse the complexity of the detectability of commutativity in power subgroups, in terms of finite presentations that encode a proof of the result. We construct a census of two-generator one-relator groups of relator length at most 9, with complete determination of isomorphism type, and verify a conjecture regarding conditions under which such groups are automatic. Furthermore, we introduce a family of one-relator groups and classify which of them act properly cocompactly on complete CAT(0) spaces; the non-CAT(0) examples are counterexamples to a variation on the aforementioned conjecture. For a subclass, we establish automaticity, which is needed for the census. The deficiency of a group is the maximum over all presentations for that group of the number of generators minus the number of relators. Every finite group has non-positive deficiency. For every prime p we construct finite p-groups of arbitrary negative deficiency, and thereby complete Kotschick's proposed classification of the integers which are deficiencies of Kähler groups. We explore variations and embellishments of our basic construction, which require subtle Schur multiplier computations, and we investigate the conditions on inputs to the construction that are necessary for success. A well-known question asks whether any two non-isometric finite volume hyperbolic 3-manifolds are distinguished from each other by the finite quotients of their fundamental groups. At present, this has been proved only when one of the manifolds is a once-punctured torus bundle over the circle. We give substantial computational evidence in support of a positive answer, by showing that no two manifolds in the SnapPea census of 72 942 finite volume hyperbolic 3-manifolds have the same finite quotients. We determine examples of sizeable graphs, as required to construct finitely presented non-hyperbolic subgroups of hyperbolic groups, which have the fewest vertices possible modulo mild topological assumptions.
APA, Harvard, Vancouver, ISO, and other styles
18

Haraway, Robert Cyrus. "Dehn paternity bounds and hyperbolicity tests." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104228.

Full text
Abstract:
Thesis advisor: George R. Meyerhoff<br>Recent advances in normal surface algorithms enable the determination by computer of the hyperbolicity of compact orientable 3-manifolds with zero Euler characteristic and nonempty boundary. Recent advances in hyperbolic geometry enable the determination by computer of the Dehn paternity relation between two orientable compact hyperbolic 3-manifolds. Presented here is an exposition of these developments, along with prototype implementations of one of these determinations in software. These have applications to two questions about Mom technology<br>Thesis (PhD) — Boston College, 2015<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
19

Przeworski, Andrew. "Tubes in hyperbolic 3-manifolds /." 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

"Margulis number for hyperbolic 3-manifolds." 2011. http://library.cuhk.edu.hk/record=b5894652.

Full text
Abstract:
Yiu, Fa Wai.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.<br>Includes bibliographical references (leaves 55-58).<br>Abstracts in English and Chinese.<br>Chapter 1 --- Introduction --- p.6<br>Chapter 2 --- Elementary properties and notations of Hyperbolic space --- p.9<br>Chapter 3 --- Poisson kernel and Conformal densities --- p.16<br>Chapter 3.1 --- Poisson kernel --- p.17<br>Chapter 3.2 --- Conformal densities --- p.19<br>Chapter 4 --- Patterson construction and decomposition --- p.27<br>Chapter 4.1 --- Patterson construction --- p.27<br>Chapter 4.2 --- Patterson decomposition --- p.33<br>Chapter 5 --- Bonahon surfaces and Grided surfaces --- p.39<br>Chapter 5.1 --- Bonahon surfaces --- p.40<br>Chapter 5.2 --- Grided surfaces --- p.46<br>Chapter 6 --- Margulis number of Hyperbolic Manifolds --- p.51<br>Margulis Number for Hypcrbolic 3-manifolds --- p.5<br>Chapter 6.1 --- Gcomertrically finite groups --- p.51<br>Chapter 6.2 --- Margulis number of Closed Hyperbolic Manifolds --- p.53<br>Bibliography --- p.55
APA, Harvard, Vancouver, ISO, and other styles
21

Kent, Richard Peabody. "Geometry and algebra of hyperbolic 3-manifolds." Thesis, 2006. http://hdl.handle.net/2152/2732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

DeBlois, Jason Charles. "Totally geodesic surfaces in hyperbolic 3-manifolds." Thesis, 2007. http://hdl.handle.net/2152/3025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

DeBlois, Jason Charles 1978. "Totally geodesic surfaces in hyperbolic 3-manifolds." 2007. http://hdl.handle.net/2152/13190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

"Two problems on closed geodesics in hyperbolic 3 manifolds." STATE UNIVERSITY OF NEW YORK AT BUFFALO, 2010. http://pqdtopen.proquest.com/#viewpdf?dispub=3372222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kang, Sungmo. "Reducible and toroidal Dehn filling with distance 3." 2009. http://hdl.handle.net/2152/6682.

Full text
Abstract:
This dissertation is an investigation into the classification of all hyperbolic manifolds which admit a reducible Dehn filling and a toroidal Dehn filling with distance 3. The first example was given by Boyer and Zhang. They used the Whitehead link. Eudave-Muñoz and Wu gave an infinite family of such hyperbolic manifolds using tangle arguments. I show in this dissertation that these are the only hyperbolic manifolds admitting a reducible Dehn filling and a toroidal Dehn filling with distance 3. The main tool to prove this is to use the intersection graphs on surfaces introduced and developed by Gordon and Luecke.<br>text
APA, Harvard, Vancouver, ISO, and other styles
26

Rodriguez, Migueles José Andrés. "Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds." Thesis, 2018. http://www.theses.fr/2018REN1S021/document.

Full text
Abstract:
Grâce au théorème d'hyperbolisation, nous savons précisément quand une variété de dimension trois compacte admet une métrique hyperbolique. Par ailleurs, d'après le théorème de rigidité de Mostow, cette structure géométrique est unique. Cependant, trouver des liens pratiques entre la géométrie et la topologie est un problème difficile. La plupart des résultats décrits dans cette thèse visent à concrétiser ces liens. Toute géodésique fermée orientée dans une surface hyperbolique admet un relèvement canonique dans le fibré tangent unitaire de la surface, et on peut donc le voir comme un nœud dans une variété de dimension trois. Les extérieurs des nœuds ainsi construits admettent une structure hyperbolique. Cette thèse a pour objet d'estimer le volume des extérieurs des relèvements canoniques. Pour toute surface hyperbolique on construit une suite de géodésique sur la surface, tel que les extérieurs associées ne sont pas homéomorphes entre elles et dont la suite des volumes respectifs est bornée. Aussi on minore le volume de l'extérieur à l'aide d'un réel explicite qui décrit une relation entre la géodésique et une décomposition en pantalons de la surface. Ceci donne une méthode pour construire une suite de géodésiques dont les volumes des extérieurs associées sont minorées en termes de la longueur de la géodésique correspondant. Dans le cas particulier de la surface modulaire, on obtient des estimations du volume de l'extérieur en termes de la période de la fraction continue associée à la géodésique<br>Due to the Hyperbolization Theorem, we know precisely when does a given compact three dimensional manifold admits a hyperbolic metric. Moreover, by the Mostow's Rigidity Theorem this geometric structure is unique. However, finding effective and computable connections between the geometry and topology is a challenging problem. Most of the results on this thesis fit into the theme of making the connections more concrete. To every oriented closed geodesic on a hyperbolic surface has a canonical lift on the unit tangent bundle of the surface, and we can see it as a knot in a three dimensional manifold. The knot complement given in this way has a hyperbolic structure. The objective of this thesis is to estimate the volume of the canonical lift complement. For every hyperbolic surface we give a sequence of geodesics on the surface, such that the knot complements associated are not homeomorphic with each other and the sequence of the corresponding volumes is bounded. We also give a lower bound of the volume of the canonical lift complement by an explicit real number which describes a relation between the geodesic and a pants decomposition of the surface. This give us a method to construct a sequence of geodesics where the volume of the associated knot complements is bounded from below in terms of the length of the corresponding geodesic. For the particular case of the modular surface, we obtain estimations for the volume of the canonical lift complement in terms of the period of the continuous fraction expansion of the corresponding geodesic
APA, Harvard, Vancouver, ISO, and other styles
27

Callahan, Jason Todd. "The arithmetic and geometry of two-generator Kleinian groups." 2009. http://hdl.handle.net/2152/7469.

Full text
Abstract:
This thesis investigates the structure and properties of hyperbolic 3-manifold groups (particularly knot and link groups) and arithmetic Kleinian groups. In Chapter 2, we establish a stronger version of a conjecture of A. Reid and others in the arithmetic case: if two elements of equal trace (e.g., conjugate elements) generate an arithmetic two-bridge knot or link group, then the elements are parabolic (and hence peripheral). In Chapter 3, we identify all Kleinian groups that can be generated by two elements for which equality holds in Jørgensen’s Inequality in two cases: torsion-free Kleinian groups and non-cocompact arithmetic Kleinian groups.<br>text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography