Academic literature on the topic 'Hyperbolic fixed points'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolic fixed points.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hyperbolic fixed points"

1

Bonckaert, Patrick. "Partially hyperbolic fixed points with constraints." Transactions of the American Mathematical Society 348, no. 3 (1996): 997–1011. http://dx.doi.org/10.1090/s0002-9947-96-01469-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Homburg, Ale Jan. "Invariant manifolds near hyperbolic fixed points." Journal of Difference Equations and Applications 12, no. 10 (2006): 1057–68. http://dx.doi.org/10.1080/10236190600986628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Colombo, A., and F. Dercole. "BORDER COLLISION OF NON-HYPERBOLIC FIXED POINTS." IFAC Proceedings Volumes 42, no. 7 (2009): 98–103. http://dx.doi.org/10.3182/20090622-3-uk-3004.00021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lindahl, Karl-Olof, and Michael Zieve. "On hyperbolic fixed points in ultrametric dynamics." P-Adic Numbers, Ultrametric Analysis, and Applications 2, no. 3 (2010): 232–40. http://dx.doi.org/10.1134/s2070046610030052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Qiang. "Bounds for fixed points on hyperbolic manifolds." Topology and its Applications 185-186 (May 2015): 80–87. http://dx.doi.org/10.1016/j.topol.2015.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Qiang. "Bounds for fixed points on hyperbolic 3-manifolds." Topology and its Applications 164 (March 2014): 182–89. http://dx.doi.org/10.1016/j.topol.2013.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HIDALGO, RUBEN A., and BERNARD MASKIT. "Fixed points of imaginary reflections on hyperbolic handlebodies." Mathematical Proceedings of the Cambridge Philosophical Society 148, no. 1 (2009): 135–58. http://dx.doi.org/10.1017/s0305004109990272.

Full text
Abstract:
AbstractA Klein–Schottky group is an extended Kleinian group, containing no reflections and whose orientation-preserving half is a Schottky group. A dihedral-Klein–Schottky group is an extended Kleinian group generated by two different Klein–Schottky groups, both with the same orientation-preserving half. We provide a structural description of the dihedral-Klein–Schottky groups.Let M be a handlebody of genus g, with a Schottky structure. An imaginary reflection τ of M is an orientation-reversing homeomorphism of M, of order two, whose restriction to its interior is an hyperbolic isometry havin
APA, Harvard, Vancouver, ISO, and other styles
8

Ginzburg, Viktor L., and Başak Z. Gürel. "Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms." Duke Mathematical Journal 163, no. 3 (2014): 565–90. http://dx.doi.org/10.1215/00127094-2410433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van Strien, Sebastian. "Smooth linearization of hyperbolic fixed points without resonance conditions." Journal of Differential Equations 85, no. 1 (1990): 66–90. http://dx.doi.org/10.1016/0022-0396(90)90089-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, Safeer Hussain, Hira Iqbal, and Mujahid Abbas. "Common Fixed Points of Two Multivalued Asymptotically Nonexpansive Mappings." European Journal of Pure and Applied Mathematics 12, no. 2 (2019): 348–57. http://dx.doi.org/10.29020/nybg.ejpam.v12i2.3371.

Full text
Abstract:
In this paper, we construct a modified Ishikawa iterative process to approximate common fixed points for two multivalued asymptotically nonexpansive mappings and prove some convergence theorems in uniformly convex hyperbolic spaces.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hyperbolic fixed points"

1

Johnson, Tomas. "Computer-aided Computation of Abelian integrals and Robust Normal Forms." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107519.

Full text
Abstract:
This PhD thesis consists of a summary and seven papers, where various applications of auto-validated computations are studied. In the first paper we describe a rigorous method to determine unknown parameters in a system of ordinary differential equations from measured data with known bounds on the noise of the measurements. Papers II, III, IV, and V are concerned with Abelian integrals. In Paper II, we construct an auto-validated algorithm to compute Abelian integrals. In Paper III we investigate, via an example, how one can use this algorithm to determine the possible configurations of limit
APA, Harvard, Vancouver, ISO, and other styles
2

Vidarte, José Humberto Bravo. "Linearização suave de pontos fixos hiperbólicos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13052010-215052/.

Full text
Abstract:
Neste trabalho tem por objetivo a construção de conjugações suaves de pontos fixos hiperbólicos com condições de não ressonância. Por tanto, inicialmente são apresentados alguns conceitos básicos sobre espaços de Banach e alguns resultados de equações diferenciais ordinárias em espaços de Banach e sistemas dinâmicos, apresentamos o teorema de Hartman Grobman como motivação inicial de Linearização. Apresentamos também vários exemplos como motivação para estudar o Teorema de Sternberg para contrações hiperbólicas, o principal resultado estudado nesta dissertação para contrações hiperbólicas<br>T
APA, Harvard, Vancouver, ISO, and other styles
3

Pinçon, Bruno. "Étude et analyse numérique d'un système distribué modélisant un échangeur de chaleur." Compiègne, 1990. http://www.theses.fr/1990COMPD322.

Full text
Abstract:
L'objet de ce travail est la simulation et l'étude théorique du transfert de chaleur entre la paroi d'un tube chauffé par effet Joule et un fluide en ébullition traversant ce tube. Ce problème est motivé par l'étude de certains phénomènes pouvant survenir dans les échangeurs de chaleur de centrales nucléaires, dont en particulier le phénomène de crise d'ébullition qui conduit à l'apparition de très forts gradients thermiques dans le tube. Le modèle utilisé se constitue d'une équation de la chaleur non-linéaire régissant la température dans le tube et d'une équation de transport régissant le ti
APA, Harvard, Vancouver, ISO, and other styles
4

Laurent-Brouty, Nicolas. "Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4056.

Full text
Abstract:
Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application des modèles macroscopiques en milieu urbain. Les zones urbaines sont désormais régulièrement confrontées à des niveaux de congestion record et à des épisodes de pollution atmosphérique causés par le trafic routier. L’objectif de cette thèse est alors de développer des modèles de trafic qui représentent de manière réaliste l’évolution des véhicules en milieu urbain. Dans un premier temps, nous considérons le modèle
APA, Harvard, Vancouver, ISO, and other styles
5

Norfleet, Mark Alan. "Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points." 2013. http://hdl.handle.net/2152/21688.

Full text
Abstract:
We construct Fuchsian groups [Gamma] of signature (0 : 2, ... ,2 ;1;0) so that the set of hyperbolic fixed points of [Gamma] will contain a given finite collection of elements in the boundary of the hyperbolic plane. We use this to establish that there are infinitely many non-commensurable non-cocompact Fuchsian groups [Delta] of finite covolume sitting in PSL₂(Q) so that the set of hyperbolic fixed points of [Delta] will contain a given finite collection of rational boundary points of the hyperbolic plane. We also give a parameterization of Fuchsian groups of signature (0:2,2,2;1;0) and inves
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Xue-Zheng. "Smooth linearization near a hyperbolic fixed point." 1990. http://catalog.hathitrust.org/api/volumes/oclc/23092455.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hyperbolic fixed points"

1

Chen, Kuo-Tsai. "On Nonelementary Hyperbolic Fixed Points of Diffeomorphisms." In Collected Papers of K.-T. Chen. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-2096-1_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shoikhet, David. "Hyperbolic geometry on the unit disk and fixed points." In Semigroups in Geometrical Function Theory. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9632-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kapçak, Sinan. "A Note on Non-hyperbolic Fixed Points of One-Dimensional Maps." In Progress on Difference Equations and Discrete Dynamical Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60107-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palmer, Ken. "Hyperbolic Fixed Points of Diffeomorphisms and Their Stable and Unstable Manifolds." In Shadowing in Dynamical Systems. Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3210-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martínez-Moreno, Juan, Kenyi Calderón, Poom Kumam, and Edixon Rojas. "Approximating Fixed Points of Suzuki $$(\alpha ,\beta )$$-Nonexpansive Mappings in Ordered Hyperbolic Metric Spaces." In Advances in Metric Fixed Point Theory and Applications. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6647-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haro, A. "Center and Center-(Un)Stable Manifolds of Elliptic-Hyperbolic Fixed Points of 4D-Symplectic Maps. an Example: the Froeschlé Map." In Hamiltonian Systems with Three or More Degrees of Freedom. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4673-9_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kirk, William, and Naseer Shahzad. "Busemann Spaces and Hyperbolic Spaces." In Fixed Point Theory in Distance Spaces. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arnold, Ludwig, and Petra Boxler. "Additive noise turns a hyperbolic fixed point into a stationary solution." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Hyperbolic fixed points." In Graduate Studies in Mathematics. American Mathematical Society, 2016. http://dx.doi.org/10.1090/gsm/173/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vadim, Kaloshin, and Zhang Ke. "Normally hyperbolic cylinders at double resonance." In Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0010.

Full text
Abstract:
This chapter proves the geometric picture of double resonance described in Chapter 4. There are two cases. In the simple critical homology case, the chapter shows the homoclinic orbit can be extended to periodic orbits both in positive and negative energy. The union of these periodic orbits forms a normally hyperbolic invariant manifold (which is homotopic to a cylinder with a puncture). In the non-simple homology case, the chapter demonstrates that for positive energy, there exist periodic orbits. The strategy is to prove the existence of these periodic orbits as hyperbolic fixed points of composition of local and global maps. A main technical tool to prove the existence and uniqueness of these fixed points is the Conley-McGehee isolation block.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hyperbolic fixed points"

1

Jian-hui, Li, Yi Chao-gang, Liu Man-lan, Zhi Yan-li, and Yu Gong-shan. "Study on the dynamic behavior of truncation errors in non-hyperbolic fixed points chaotic systems." In 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, 2020. http://dx.doi.org/10.1109/ispds51347.2020.00026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hayes, Christina, and Tomáš Gedeon. "Hyperbolic fixed points are typical in the space of mixing operators for the infinite population genetic algorithm." In the 2005 workshops. ACM Press, 2005. http://dx.doi.org/10.1145/1102256.1102336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ulucakli, M. Erol. "Chaotic Mixing of Highly Viscous Liquids With Rectangular or Elliptical Rotors." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81036.

Full text
Abstract:
The objective of this research is to experimentally investigate various mixing regions in a two-dimensional Stokes flow driven by a rectangular or elliptical rotor. Flow occurs in a rectangular cell filled with a very viscous fluid. The Reynolds number based on rotor size is in the order of 0.5. The flow is time-periodic and can be analyzed, both theoretically and experimentally, by considering the Poincare map that maps the position of a fluid particle to its position one period later. The mixing regions of the flow are determined, theoretically, by the fixed points of this map, either hyperb
APA, Harvard, Vancouver, ISO, and other styles
4

Orynyak, Igor, Maksym Zarazovskii, and Andrii Bogdan. "Determination of the Transition Temperature Scatter Using the Charpy Data Scatter." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97697.

Full text
Abstract:
For a pressure vessels integrity assessment it is necessary to know the transition temperature of metal. It is defined from the hyperbolic tangent curve, which best approximates the Charpy V-notched (CVN) impact tests data, as the temperature corresponding to some fixed Charpy impact energy. However, when planning experiments, processing of the results, and interpreting of the resulting transition temperature, two problems arise which have not been studied in the literature. First — sufficiency of the CVN impact tests data for a curve fit building and transition temperature determination. Seco
APA, Harvard, Vancouver, ISO, and other styles
5

Abadjiev, V., and D. Petrova. "Synthesis of Geometric Primary Circles of Externally Meshed Skew-Axes Gears." In ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0130.

Full text
Abstract:
Abstract What are considered are geometric primary circles of gears which transform rotations between fixed skewed axes with a constant speed ratio. These imaginary circles differ from the pitch ones of the gears with parallel or intersecting axes. It seems they are used succeessfully for the first time as a start point in designing hyperbolic gears. Both the diameters and the mutual position parameters of the geometric primary circles are needed when gear over-alls and mounting distances as well as teeth geometry are determined.
APA, Harvard, Vancouver, ISO, and other styles
6

Tar, Jozsef K., Janos F. Bito, Imre J. Rudas, Krzysztof R. Kozlowski, and Jose A. Tenreiro Machado. "Possible adaptive control by tangent hyperbolic fixed point transformations used for controlling the -6-type van der pol oscillator." In 2008 IEEE International Conference on Computational Cybernetics (ICCC). IEEE, 2008. http://dx.doi.org/10.1109/icccyb.2008.4721371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!