Dissertations / Theses on the topic 'Hyperbolic Geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hyperbolic Geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Markham, Sarah. "Hypercomplex hyperbolic geometry." Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3698/.
Full textMarshall, T. H. (Timothy Hamilton). "Hyperbolic Geometry and Reflection Groups." Thesis, University of Auckland, 1994. http://hdl.handle.net/2292/2140.
Full textMurray, Marilee Anne. "Hyperbolic Geometry and Coxeter Groups." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1343040882.
Full textWalker, Mairi. "Continued fractions and hyperbolic geometry." Thesis, Open University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.700134.
Full textThorgeirsson, Sverrir. "Hyperbolic geometry: history, models, and axioms." Thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227503.
Full textGharamti, Moustafa. "Supersymmetry and geometry of hyperbolic monopoles." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10479.
Full textRippy, Scott Randall. "Applications of hyperbolic geometry in physics." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1099.
Full textNaeve, Trent Phillip. "Conics in the hyperbolic plane." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3075.
Full textBowen, Lewis Phylip. "Density in hyperbolic spaces." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3077409.
Full textSaratchandran, Hemanth. "Four dimensional hyperbolic link complements via Kirby calculus." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:ba72ee75-c22f-4800-a38c-76e5cf411ad9.
Full textBarrett, Benjamin James. "Detecting topological properties of boundaries of hyperbolic groups." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285572.
Full textHeard, Damian. "Computation of hyperbolic structures on 3 dimensional orbifolds /." Connect to theis, 2005. http://eprints.unimelb.edu.au/archive/00001577.
Full textRaghuvanshi, Anurag. "Particle filter with Hyperbolic Measurements and Geometry Constraints." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1366724596.
Full textLong, Yusen. "Diverse aspects of hyperbolic geometry and group dynamics." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM016.
Full textThis thesis explores diverse topics related to hyperbolic geometry and group dynamics, aiming to investigate the interplay between geometry and group theory. It covers a wide range of mathematical disciplines, such as convex geometry, stochastic analysis, ergodic and geometric group theory, and low-dimensional topology, etc. As research outcomes, the hyperbolic geometry of infinite-dimensional convex bodies is thoroughly examined, and attempts are made to develop integral geometry in infinite dimensions from a perspective of stochastic analysis. The study of big mapping class groups, a current focus in low-dimensional topology and geometric group theory, is undertaken with a complete determination of their fixed-point on compacta property. The thesis also clarifies certain folklore theorems regarding the Gromov hyperbolic spaces and the dynamics of amenable groups on them. Last but not the least, the thesis studies the connectivity of the Gromov boundary of fine curve graphs, a combinatorial tool employed in the study of the homeomorphism groups of surfaces of finite type
Ross, Skyler W. "Non-Euclidean Geometry." Fogler Library, University of Maine, 2000. http://www.library.umaine.edu/theses/pdf/RossSW2000.pdf.
Full textDario, Douglas Francisco. "Geometrias não euclidianas: elíptica e hiperbólica no ensino médio." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/862.
Full textThis work aims to contribute in including teaching of Non-Euclidean Geometry in high school. For this, a bibliographic research was made about the appearance of such geometries and introduce content for teaching of Elliptical and Hyperbolic Geometries, addressing the main topics listed by Curriculum Guidelines of Paraná, comparing them with Euclidean Geometry. Clarify that where quoted elliptic geometry, we are really dealing with Surface Spherical Geometry, for that this work be compatible with the Curriculum Guidelines of the State of Paraná. Although there are some propositions and their proofs, in most part of the work there aren´t theoretical studies and statements with all rigors mathematics requires, we seek to show the main concepts and use a language that can be understood by any person who is willing to understand and after studying, teach these geometries in school. In November 2013, during the XVII Semana de Matemática and III Encontro de Ensino de Matemática Câmpus de Pato Branco – PR of UTFPR, a mini-course was applied with part of this content to some participants. At the end of the mini-course a questionnaire was applied inquiring the basic knowledge, the current teaching situation of these geometries and aim to identify the interest in this issue and the real possibility of inclusion in the classrooms, the results can be found in the following work.
Senger, Steven Iosevich Alex. "Erdős distance problem in the hyperbolic half-plane." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/5341.
Full textValero, Carlos. "On the geometry and topology of hyperbolic variational symbols." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302354.
Full textButler, Joe R. "The Torus Does Not Have a Hyperbolic Structure." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc500333/.
Full textPraggastis, Brenda L. "Markov partitions for hyperbolic toral automorphisms /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/5773.
Full textLogan, Deborah F. "A General Theory of Geodesics with Applications to Hyperbolic Geometry." UNF Digital Commons, 1995. http://digitalcommons.unf.edu/etd/101.
Full textJones, Gavin L. "The iteration theory of Blaschke products." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308237.
Full textHaxhi, Karen Kleinschmidt. "The euclidean and hyperbolic geometry underlying M.C. Escher's regular division designs /." View abstract, 1998. http://library.ctstateu.edu/ccsu%5Ftheses/1491.html.
Full textThesis advisor: Dr. Jeffrey McGowan. "...in partial fulfillment of the requirements for the degree of Master of Science." Includes bibliographical references (leaves [78-79]).
Masters, Joseph David. "Lengths and homology of hyperbolic 3-manifolds /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textKuhlmann, Sally Malinda. "Geodesic knots in hyperbolic 3 manifolds." Connect to thesis, 2005. http://repository.unimelb.edu.au/10187/916.
Full textAdams, Hass and Scott have shown that every orientable finite volume hyperbolic 3-manifold contains at least one geodesic knot. The first part of this thesis is devoted to extending this result. We show that all cusped and many closed orientable finite volume hyperbolic 3-manifolds contain infinitely many geodesic knots. This is achieved by studying infinite families of closed geodesics limiting to an infinite length geodesic in the manifold. In the cusped manifold case the limiting geodesic runs cusp-to-cusp, while in the closed manifold case its ends spiral around a short geodesic in the manifold. We show that in the above manifolds infinitely many of the closed geodesics in these families are embedded.
The second part of the thesis is an investigation into the topology of geodesic knots, and is motivated by Thurston’s Geometrization Conjecture relating the topology and geometry of 3-manifolds.We ask whether the isotopy class of a geodesic knot can be distinguished topologically within its homotopy class. We derive a purely topological description for infinite subfamilies of the closed geodesics studied previously in cusped manifolds, and draw explicit projection diagrams for these geodesics in the figure-eight knot complement. This leads to the result that the figure-eight knot complement contains geodesics of infinitely many different knot types in the3-sphere when the figure-eight cusp is filled trivially.
We conclude with a more direct investigation into geodesic knots in the figure-eight knot complement. We discuss methods of locating closed geodesics in this manifold including ways of identifying their isotopy class within a free homotopy class of closed curves. We also investigate a specially chosen class of knots in the figure-eight knot complement, namely those arising as closed orbits in its suspension flow. Interesting examples uncovered here indicate that geodesics of small tube radii may be difficult to distinguish topologically in their free homotopy class.
Venzke, Rupert William Calegari Danny Calegari Danny. "Braid forcing, hyperbolic geometry, and pseudo-Anosov sequences of low entropy /." Diss., Pasadena, Calif. : Caltech, 2008. http://resolver.caltech.edu/CaltechETD:etd-05292008-085545.
Full textFARACO, Gianluca. "The Geometry Awakens: on the relationship between holonomy and hyperbolic structures." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2487998.
Full textQuesta tesi esamina la relazione tra strutture iperboliche ramificate su superfici e rappresentazioni del gruppo fondamentale in $ \ pslr $. Una struttura iperbolica ramificata su una superficie $ S $ è una struttura iperbolica conica tale che l'angolo attorno a qualsiasi punto conico è un multiplo intero di $ 2 \ pi $. \\ Qualsiasi struttura di questo tipo determina una rappresentazione del gruppo fondamentale $ \ rho: \ pi_1S \ longrightarrow \ pslr $ detta olonomia. Ci chiediamo, al contrario, quando una rappresentazione del gruppo fondamentale sorge come olonomia di una struttura iperbolica ramificata. In questo lavoro considereremo solo strutture iperboliche $ 2- $ dimensionali. \\ Sia $ S $ una superficie chiusa di genere $ 2 $, e sia $ \ rho: \ pi_1 S \ longrightarrow \ pslr $ una rappresentazione con classe di Eulero $ \ mathcal {E} (\ rho) = \ pm 1 $. Allora $\rho$ è olonomia di una struttura iperbolica ramificata $ \ sigma $ su $ S $ con un punto conico $4\pi$. Le stesse tecniche usate nel caso del genere $ 2 $ possono essere adoperate anche in genere più alto. In questo modo possiamo provare che qualsiasi rappresentazione $ \ rho: \ pi_1 S \ longrightarrow \ pslr $ con la classe Euler $ \ mathcal {E} (\ rho) = \ pm \ big (\ chi (S) + 1 \ big) $ che applica una curva semplice non separante ad un elemento non iperbolico, è l'olonomia di una struttura iperbolica ramificata $ \ sigma $ su $ S $ con un punto cono di angolo $ 4 \ pi $.
Valério, José Carlos. "Introdução à geometria hiperbólica." Universidade Federal de Juiz de Fora (UFJF), 2017. https://repositorio.ufjf.br/jspui/handle/ufjf/5405.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-08T13:23:10Z (GMT) No. of bitstreams: 1 josecarlosvalerio.pdf: 982623 bytes, checksum: 72d4cd36b83464bfd6a83caee289315d (MD5)
Made available in DSpace on 2017-08-08T13:23:10Z (GMT). No. of bitstreams: 1 josecarlosvalerio.pdf: 982623 bytes, checksum: 72d4cd36b83464bfd6a83caee289315d (MD5) Previous issue date: 2017-05-04
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Na presente dissertação será introduzido o desenvolvimento histórico da Geometria Hiperbólica. Será apresentado o quinto postulado de Euclides, de acordo com o ponto de vista dos Axiomas de Hilbert, correlacionando-os com os resultados da Geometria Neutra. Serão apresentados e provados alguns resultados da Geometria Hiperbólica, no que diz respeito às propriedades das retas paralelas, dos triângulos generalizados e seus critérios de congruência. Por fim, serão discutidas as propriedades que são válidas tanto para a Geometria Euclidiana quanto Hiperbólica, enfatizando que a principal diferença entre elas é o postulado das paralelas.
In the present dissertation we will introduce the historical development of the hyperbolic geometry. We will present Euclid’s fifth postulate from the Hilbert’s axioms point of view and we will correlate them with results of the Neutral Geometry. We will present and prove some results of the Hyperbolic Geometry, regarding the properties of the parallel lines, and the generalized triangles and their congruence criteria. At last, we will discuss the proprieties which are valid in both Euclidean and Hyperbolic Geometry, and we will emphasize that the main difference between them is the parallel postulate.
Saber, Hicham. "Equivariant Functions for the Möbius Subgroups and Applications." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20236.
Full textMarfai, Frank S. "Hyperbolic transformations on cubics in H²." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/142.
Full textSilva, Paul Jerome. "Investigation of the effectiveness of interface constraints in the solution of hyperbolic second-order differential equations." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1953.
Full textHaapalainen, M. (Mikko). "Dielectrophoretic mobility of a spherical particle in 2D hyperbolic quadrupole electrode geometry." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202648.
Full textTiivistelmä Materiaalin dielektriset ominaisuudet ovat merkittäviä monissa teollisissa sekä tieteellisissä mittausteknisissä sovelluksissa. Yleensä nämä ominaisuudet mitataan mikroaaltosensoreilla, joilla mitataan näytetilavuuden keskiarvo. Tarve tietää yksittäisen partikkelin dielektriset ominaisuudet on kuitenkin lisääntynyt useilla segmenteillä. Dielektroforeesi (DEP) on menetelmä, jolla voidaan toistettavasti mitata yksittäisen partikkelin permittiivisyys ja johtavuus suhteellisen yksinkertaisella mittaussysteemillä. Tässä työssä DEP-alusta koostuu neljästä elektrodista, joilla on hyperbelin muotoinen elektrodin reunan muoto. Geometria tuottaa lineaarisen sähkökentän gradientin, mikä johtaa vakio DEP-voimaan alustan aktiivisella alueella. Niinpä partikkelin ominaisuuksien määrittely niiden liikkuvuuden perusteellä on suoraviivaista. Liikkuvuus on riippuvainen partikkelin koosta, sähkökentän gradientin kulmakertoimesta, kantajaliuoksen johtavuudesta sekä käytetyn sähkökentän taajuudesta. Työssä on tutkittu partikkelin karakterisointia 2D-alustalla, partikkelin 3D-käyttäytymistä, samanaikaista moni-ilmiötarkkailua sekä indium-tina-oksidi (ITO) elektrodimateriaalin soveltuvuutta DEP-alustoihin. Kokeet tehtiin polystyreenipartikkeleilla käyttäen eri johtavuuksisia kaliumkloridi-kantajaliuoksia. Elektrodien läpinäkyvyys mahdollisti holografisen 3D-kuvantamisen, jonka avulla havaittiin alustan rajallinen toimintaetäisyys sekä partikkelin syvyyssuuntainen liike DEP-voiman vaikutuksesta. Kuitenkin 3D- ja 2D-liikkeen välillä havaittiin vain vähäinen ero. Määritellyt partikkelin dielektriset ominaisuudet eroavat kiinteän polystyreenin arvoista, jolloin kantajaliuoksen ominaisuuksilla on merkittävä vaikutus määriteltyihin partikkelin ominaisuuksiin. Mittauksilla saavutettiin hyvä toistettavuus jopa yksittäisen partikkelin mittauksista, niinpä näytteen partikkelipitoisuus voi olla erittäin pieni. DEP-menetelmän merkittävimpiä rajoitteita ovat rajallinen toimintaetäisyys sekä rajallinen partikkelikoon variaatio, mikä voi olla yhdellä DEP-alustalla noin kymmenkertainen
ROSMONDI, DANIELE. "Earthquakes on hyperbolic surfaces with geodesic boundary and Anti de Sitter geometry." Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203304.
Full textRossini, Marcela Aparecida Penteado. "Um estudo sobre o uso de régua, compasso e um software de geometria dinâmica no ensino da geometria hiperbólica /." Rio Claro : [s.n.], 2010. http://hdl.handle.net/11449/91137.
Full textBanca: Ruy Madsen Barbosa
Banca: Geraldo Perez
Resumo: O principal objetivo deste trabalho foi contribuir para o ensino e aprendizagem da geometria hiperbólica, apresentando uma proposta que visa à introdução do estudo dessa geometria, utilizando o software Cabri - Géomètre II (menu hiperbólico) e, também, a régua e o compasso na abordagem dos conceitos fundamentais. Procedemos desta maneira por entendermos que estes recursos integrados podem cooperar para uma melhor compreensão e assimilação das noções apresentadas. Esta pesquisa tem abordagem do tipo qualitativa e foi desenvolvida seguindo a proposta metodológica de Romberg, e a coleta de dados se deu por meio de observações, anotações e fotos. A metodologia de resolução de problemas foi utilizada na elaboração das atividades, as quais foram aplicadas a alunos de um curso de graduação em engenharia elétrica. Os dados coletados foram analisados qualitativamente, buscando compreender como tais instrumentos educacionais associados podem auxiliar no processo ensino-aprendizagem desta geometria não-euclidiana. Ressaltamos que na evolução desta proposta foi possível reforçar o entendimento de conceitos da geometria euclidiana que são usados nas construções hiperbólicas
Abstract: The ultimate goal of this essay is to contribute to the teaching and learning process of the hyperbolic geometry,introducing a proposal that aims for the presentation of the study of this geometry,making use of the software entitled Geomere Cabri ll ( hyperbolic menu ) and , also ,the ruler and the compasses in the approach of essential concepts. We followed this way of working as we understand that such resources when integrated, may cooperate in a better understanding and assimilation of those presented notions.This research has a qualitative kind of approach and was developed following the methodological proposal of Romberg, and we collect data by watching ,writing down notes and taking pictures.The methodology of problem solutions was deployed in the activities elaboration which were applied to students in an Electric Engineering degree course.The collected data were analyzed taking into account the quality, trying to understand how such educational tools together may help in the teaching- learningprocess of these no - Euclidian geometry concepts which are used in the hyperbolic constructions
Mestre
Weed, Michael. "The anatomy of hyperbolic trajectories in the Gulf of Mexico." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 2.59 Mb., 169 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1432294.
Full textHidalgo, Joshua L. "A KLEINIAN APPROACH TO FUNDAMENTAL REGIONS." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/35.
Full textArcari, Inedio. "Um texto de geometria hiperbólica." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307016.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação
Made available in DSpace on 2018-08-11T06:10:14Z (GMT). No. of bitstreams: 1 Arcari_Inedio_M.pdf: 2739163 bytes, checksum: 0ea17bdba620035f3cb29f9033fab926 (MD5) Previous issue date: 2008
Resumo: A presente dissertação é um texto introdutório de Geometria Hiperbólica com alguns resultados e comentários de Geometria Elíptica. Nossa intenção foi compilar um material que possa ser utilizado em cursos introdutórios de Geometria Hiperbólica tanto em nível de licenciatura quanto de bacharelado. Para tornar o texto mais acessível, notas históricas sobre a bela página do desenvolvimento das Geometrias Não Euclidianas foram introduzidas logo no primeiro capítulo. Procuramos ilustrar fartamente o texto com figuras dentre as quais várias que foram baseadas no Modelo Euclidiano do Disco de Poincaré para a Geometria Hiperbólica. Atualmente, o estudo de Geometria Hiperbólica tem sido bastante facilitado pelo uso de softwares de geometria dinâmica, como o Cabri-Géometre, GeoGebra e NonEuclid, sendo esses dois últimos softwares livres
Abstract: The present work is an introductory text of Hyperbolic Geometry with some results and comments of Elliptic eometry. Our aim in this work were to compile a material that can be used as introduction to Hyperbolic Geometry inundergraduated courses. In the first chapter we introduced historical notes about the beautiful development of the Non Euclid Geometries in order to turn the text more interesting and accesible. We illustrated the text with many figures which were done on the Euclidean Model of the Poincaré' s Disk for the Hyperbolic Geometry. In this way, the study of Hyperbolic Geometry has been softened by the use of softwares of dynamic geometry, like Cabri-Geométre and the freeware softwares GeoGebra and NonEuclid
Mestrado
Mestre em Matemática
Kume, Alfred. "On the Frechet means in simplex shape spaces." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368237.
Full textFranco, Felipe de Aguilar. "On spaces of special elliptic n-gons." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032019-081425/.
Full textNeste trabalho, estudamos relações entre isometrias elípticas especiais no plano hiperbólico complexo. Uma isometria elíptica especial pode ser vista como uma rotação em torno de um eixo fixo (uma geodésica complexa). Tal isometria é determinada especificando-se um ponto não-isotrópico p (o ponto polar do eixo fixo) bem como um número complexo unitário a (o ângulo da isometria). Qualquer relação entre isometrias elípticas especiais com ângulos racionais dá origem a uma representação H(k1;:::;kn) → PU(2;1), onde H(k1;:::;kn) : = 〈 r1; : : : ; rn ∣ rn : : : r1 = 1; rkii = 1 〉 e PU(2;1) é o grupo de isometrias que preservam a orientação do plano hiperbólico complexo. Denotamos por Rpα a isometria elíptica especial determinada pelo ponto não-isotrópico p e pelo complexo unitário α. Relações da forma Rpnαn : : :Rp1α1 = 1 em PU(2;1), chamadas n-ágonos elípticos especiais, podem ser modificadas a partir de relações curtas conhecidas como bendings: dado um produto RqβRpα, existe um subgrupo uniparamétrico B : R → SU(2;1) tal que B(s) está no centralizador de RqβRpα e RB(s)qβRB(s)pα = RqβRpα para todo s ∈ R. Assim, para cada i = 1; : : : ;n-1, podemos mudar Rpi+1α+1Rpiαi por RB(s)pi+1α+1RB(s)piα+1RB(s)piαi obtendo um novo n-ágono. Provamos que a parte genérica do espaço de pentágonos com ângulos e sinais de pontos fixados é conexa por meio de bendings. Além disso, descrevemos certas relações de comprimento 4, os f -bendings, e provamos que o espaço de pentágonos com produto de ângulos fixado é conexo por meio de bendings e f -bendings.
Garza, César. "Examples of hyperbolic knots with distance 3 toroidal surgeries in S³." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textBurton, Stephan Daniel. "Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3307.
Full textSisto, Alessandro. "Geometric and probabilistic aspects of groups with hyperbolic features." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:bcf456c4-eef0-4fe8-bb7d-8b15f9cf7b18.
Full textAnaya, Bob. "Fuchsian Groups." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/838.
Full textPilla, Eliane Cristina Geroli. "Construções de constelações de sinais geometricamente uniformes hiperbólicas." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259790.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-18T16:43:26Z (GMT). No. of bitstreams: 1 Pilla_ElianeCristinaGeroli_M.pdf: 2007393 bytes, checksum: 2b95255e6d4fca123c23a039d1a083a5 (MD5) Previous issue date: 2005
Resumo: O presente trabalho tem como meta principal construir constelações de sinais geometricamente uniformes no plano hiperbólico, visando considerá-las como alfabeto para geração de códigos de espaço de sinais, em particular os códigos de classes laterais generalizados. Para estabelecer estas constelações foi escolhido um conjunto de sinais geometricamente uniforme, constituído pelos centros dos octógonos da tesselação {8, 8}. Depois foi obtido um rotulamento para os elementos do grupo gerador dos conjuntos de sinais geometricamente uniformes em cada classe lateral. Finalmente, a partir do isomorfismo rótulo obtivemos um rotulamento isométrico para os elementos do conjunto de sinais
Abstract: Our goal in this work is to construct hyperbolic geometrically uniform signal constellations (more specifically g-torus) that are able to act as alphabets for ge neration of codes. To obtain these constellations we choose geometrically uniform signal sets consisting of the centers of the p-gons of tessellations of type {p, q}. From these constellations we obtain labelings for the elements of the generator group of the geometrically uniform signal sets in each coset. Finally, by the label isomorphism we obtain an isometric labeling for the elements of the signal set
Mestrado
Telecomunicações e Telemática
Mestre em Engenharia Elétrica
Persson, Anna. "Grundläggande hyperbolisk geometri." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-211.
Full textI denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.
Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.
In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.
The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.
Galli, Daniele. "The Selberg Zeta Function: A golden thread through hyperbolic geometry, dynamics and number theory." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18781/.
Full textBiswas, Debapriya. "Geometry of elliptic, parabolic and hyperbolic homogeneous spaces using Clifford algebras and group representations." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432297.
Full textStrzheletska, Elena. "The Euler Line in non-Euclidean geometry." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2443.
Full textRossini, Marcela Aparecida Penteado [UNESP]. "Um estudo sobre o uso de régua, compasso e um software de geometria dinâmica no ensino da geometria hiperbólica." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/91137.
Full textO principal objetivo deste trabalho foi contribuir para o ensino e aprendizagem da geometria hiperbólica, apresentando uma proposta que visa à introdução do estudo dessa geometria, utilizando o software Cabri - Géomètre II (menu hiperbólico) e, também, a régua e o compasso na abordagem dos conceitos fundamentais. Procedemos desta maneira por entendermos que estes recursos integrados podem cooperar para uma melhor compreensão e assimilação das noções apresentadas. Esta pesquisa tem abordagem do tipo qualitativa e foi desenvolvida seguindo a proposta metodológica de Romberg, e a coleta de dados se deu por meio de observações, anotações e fotos. A metodologia de resolução de problemas foi utilizada na elaboração das atividades, as quais foram aplicadas a alunos de um curso de graduação em engenharia elétrica. Os dados coletados foram analisados qualitativamente, buscando compreender como tais instrumentos educacionais associados podem auxiliar no processo ensino-aprendizagem desta geometria não-euclidiana. Ressaltamos que na evolução desta proposta foi possível reforçar o entendimento de conceitos da geometria euclidiana que são usados nas construções hiperbólicas
The ultimate goal of this essay is to contribute to the teaching and learning process of the hyperbolic geometry,introducing a proposal that aims for the presentation of the study of this geometry,making use of the software entitled Geomere Cabri ll ( hyperbolic menu ) and , also ,the ruler and the compasses in the approach of essential concepts. We followed this way of working as we understand that such resources when integrated, may cooperate in a better understanding and assimilation of those presented notions.This research has a qualitative kind of approach and was developed following the methodological proposal of Romberg, and we collect data by watching ,writing down notes and taking pictures.The methodology of problem solutions was deployed in the activities elaboration which were applied to students in an Electric Engineering degree course.The collected data were analyzed taking into account the quality, trying to understand how such educational tools together may help in the teaching- learningprocess of these no - Euclidian geometry concepts which are used in the hyperbolic constructions
Genevois, Anthony. "Cubical-like geometry of quasi-median graphs and applications to geometric group theory." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0569/document.
Full textThe class of quasi-median graphs is a generalisation of median graphs, or equivalently of CAT(0) cube complexes. The purpose of this thesis is to introduce these graphs in geometric group theory. In the first part of our work, we extend the definition of hyperplanes from CAT(0) cube complexes, and we show that the geometry of a quasi-median graph essentially reduces to the combinatorics of its hyperplanes. In the second part, we exploit the specific structure of the hyperplanes to state combination results. The main idea is that if a group acts in a suitable way on a quasi-median graph so that clique-stabilisers satisfy some non-positively curved property P, then the whole group must satisfy P as well. The properties we are interested in are mainly (relative) hyperbolicity, (equivariant) lp-compressions, CAT(0)-ness and cubicality. In the third part, we apply our general criteria to several classes of groups, including graph products, Guba and Sapir's diagram products, some wreath products, and some graphs of groups. Graph products are our most natural examples, where the link between the group and its quasi-median graph is particularly strong and explicit; in particular, we are able to determine precisely when a graph product is relatively hyperbolic