Academic literature on the topic 'Hyperbolisch'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolisch.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hyperbolisch"
Gehring, Nicole. "Ein systematischer Backstepping-Zugang zur Regelung gekoppelter ODE-PDE-ODE-Systeme." at - Automatisierungstechnik 68, no. 8 (August 27, 2020): 654–66. http://dx.doi.org/10.1515/auto-2020-0030.
Full textYegin, R., and U. Dursun. "On Submanifolds of Pseudo-Hyperbolic Space with 1-Type Pseudo-Hyperbolic Gauss Map." Zurnal matematiceskoj fiziki, analiza, geometrii 12, no. 4 (December 25, 2016): 315–37. http://dx.doi.org/10.15407/mag12.04.315.
Full textGlowacki, Elizabeth M., and Mary Anne Taylor. "Health Hyperbolism: A Study in Health Crisis Rhetoric." Qualitative Health Research 30, no. 12 (May 25, 2020): 1953–64. http://dx.doi.org/10.1177/1049732320916466.
Full textKostin, A. V., and I. Kh Sabitov. "Smarandache Theorem in Hyperbolic Geometry." Zurnal matematiceskoj fiziki, analiza, geometrii 10, no. 2 (June 25, 2014): 221–32. http://dx.doi.org/10.15407/mag10.02.221.
Full textLópez Díaz, L. F. "Bóvedas por arista de paraboloides hiperbólicos asimétricos." Informes de la Construcción 50, no. 458 (December 30, 1998): 31–41. http://dx.doi.org/10.3989/ic.1998.v50.i458.877.
Full textMosher, Lee. "A hyperbolic-by-hyperbolic hyperbolic group." Proceedings of the American Mathematical Society 125, no. 12 (1997): 3447–55. http://dx.doi.org/10.1090/s0002-9939-97-04249-4.
Full textKuznetsov, S. P. "Generation of Robust Hyperbolic Chaos in CNN." Nelineinaya Dinamika 15, no. 2 (2019): 109–24. http://dx.doi.org/10.20537/nd190201.
Full textKuznetsov, S. P. "Some Lattice Models with Hyperbolic Chaotic Attractors." Nelineinaya Dinamika 16, no. 1 (2020): 13–21. http://dx.doi.org/10.20537/nd200102.
Full textSchochet, Steven. "Hyperbolic-hyperbolic singular limits." Communications in Partial Differential Equations 12, no. 6 (January 1987): 589–632. http://dx.doi.org/10.1080/03605308708820504.
Full textBawa, Parveen. "Addition Theorems and Nature of Jacobi Hyperbolic Functions." International Journal of Scientific Research 3, no. 6 (June 1, 2012): 250–53. http://dx.doi.org/10.15373/22778179/june2014/79.
Full textDissertations / Theses on the topic "Hyperbolisch"
Schroll, Hans Joachim. "Konvergenz finiter Differenzverfahren für nichtlineare hyperbolisch-parabolische Systeme /." Zürich, 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10273.
Full textHenseler, Reiner. "A kinetic model for grain growth." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2007. http://dx.doi.org/10.18452/15676.
Full textThe subject matter of this thesis is a detailed analysis of the self--consistent kinetic model for grain growth introduced by Fradkov. The model is based on the von Neumann--Mullins law describing the change of area of grains according to their topological class, i.e. the number of edges they have. Topological events are performed by coupling terms between equations for the number densities of different topological classes. The resulting system of transport equations is infinite-dimensional with a tridiagonal coupling structure. Self-consistency of this kinetic model is achieved by introducing a coupling''s weight making the equations nonlinear and nonlocal in space. We start with an introduction in the first chapter. Afterwards in the second chapter we derive Fradkov''s model and carry out formal calculations to illustrate self-consistency. In the third chapter we present a priori calculations mainly allowing us to bound the nonlinearity. This enables us to prove existence and uniqueness of solutions to finite-dimensional systems in the first part of the fourth chapter. Further bounds on the number densities established in the fifth chapter allow for passing to the limit concerning the number of equations in the second part of the fourth chapter. Therefore we prove existence of solutions to the infinite-dimensional system by a suitable approximation procedure. Uniqueness and continuous dependence on the data is then provided by energy methods. The sixth chapter focusses on long-time behaviour and mainly on stationary solutions of a rescaled system as candidates for self-similar solutions. Finally we prove Lewis'' law asymptotically.
Knott, Gereon. "Oscillatory Solutions to Hyperbolic Conservation Laws and Active Scalar Equations." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-122808.
Full textAryasomayajula, Naga Venkata Anilatmaja. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16828.
Full textIn 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
Persson, Anna. "Grundläggande hyperbolisk geometri." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-211.
Full textI denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.
Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.
In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.
The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.
Steckelberg, Torben. "Hyperbolische Bewegungen auf Lorentz-Boosts /." Hamburg, 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000252297.
Full textKoch, Tino. "Hyperbolische einfach-punktierte Torus-Bündel." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=957665474.
Full textHawksley, Ruth. "Hyperbolic monopoles." Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/14019.
Full textLê, Nguyên Khoa 1975. "Time-frequency analyses of the hyperbolic kernel and hyperbolic wavelet." Monash University, Dept. of Electrical and Computer Systems Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/8299.
Full textVlamis, Nicholas George. "Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104137.
Full textThesis advisor: Ian Biringer
The first part of this dissertation is on the quasiconformal homogeneity of surfaces. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the notion of quasiconformal homogeneity for closed oriented hyperbolic surfaces restricted to subgroups of the mapping class group. We find uniform lower bounds for the associated quasiconformal homogeneity constants across all closed hyperbolic surfaces in several cases, including the Torelli group, congruence subgroups, and pure cyclic subgroups. Further, we introduce a counting argument providing a possible path to exploring a uniform lower bound for the nonrestricted quasiconformal homogeneity constant across all closed hyperbolic surfaces. We then move on to identities on hyperbolic manifolds. We study the statistics of the unit geodesic flow normal to the boundary of a hyperbolic manifold with non-empty totally geodesic boundary. Viewing the time it takes this flow to hit the boundary as a random variable, we derive a formula for its moments in terms of the orthospectrum. The first moment gives the average time for the normal flow acting on the boundary to again reach the boundary, which we connect to Bridgeman's identity (in the surface case), and the zeroth moment recovers Basmajian's identity. Furthermore, we are able to give explicit formulae for the first moment in the surface case as well as for manifolds of odd dimension. In dimension two, the summation terms are dilogarithms. In dimension three, we are able to find the moment generating function for this length function
Thesis (PhD) — Boston College, 2015
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Books on the topic "Hyperbolisch"
Hyperbolic geometry and applications in quantum chaos and cosmology. Cambridge, UK: Cambridge University Press, 2012.
Find full textCoornaert, M. Géométrie et théorie des groupes: Les groupes hyperboliques de Gromov. Berlin: Springer, 1990.
Find full textAnderson, James W. Hyperbolic Geometry. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3987-4.
Full textKuznetsov, Sergey P. Hyperbolic Chaos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23666-2.
Full textBeckh, Matthias. Hyperbolic structures. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118932711.
Full textBeckh, Matthias. Hyperbolic structures. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc., 2014.
Find full textBarot, Michael. Einführung in die hyperbolische Geometrie. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25813-9.
Full textGeorgiev, Vladimir. Semilinear hyperbolic equations. Tokyo: Mathematical Society of Japan, 2000.
Find full textBook chapters on the topic "Hyperbolisch"
Rosebrock, Stephan. "Hyperbolische Gruppen." In Anschauliche Gruppentheorie, 191–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60787-9_10.
Full textAgricola, Ilka, and Thomas Friedrich. "Hyperbolische Geometrie." In Elementargeometrie, 149–87. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-06731-1_3.
Full textHanke-Bourgeois, Martin. "Hyperbolische Erhaltungsgleichungen." In Mathematische Leitfäden, 769–821. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-94877-9_19.
Full textWagner, Jürgen. "Hyperbolische Geometrie." In Einblicke in die euklidische und nichteuklidische Geometrie, 235–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54072-5_5.
Full textHengst, Jochen. "Hyperbolische Metapher." In Ansätze zu einer Archäologie der Literatur, 259–303. Stuttgart: J.B. Metzler, 2000. http://dx.doi.org/10.1007/978-3-476-02740-5_8.
Full textRosebrock, Stephan. "Hyperbolische Gruppen." In Geometrische Gruppentheorie, 151–71. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-322-99649-7_9.
Full textDenk, Robert, and Reinhard Racke. "Hyperbolische Gleichungen." In Kompendium der ANALYSIS - Ein kompletter Bachelor-Kurs von Reellen Zahlen zu Partiellen Differentialgleichungen, 263–72. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-2123-2_24.
Full textSonar, Thomas. "Hyperbolische Erhaltungsgleichungen." In Mehrdimensionale ENO-Verfahren, 18–39. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-90842-1_2.
Full textMarsal, Dietrich. "Hyperbolische Gleichungen." In Finite Differenzen und Elemente, 89–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-49948-7_5.
Full textBerchtold, Florian. "Hyperbolische Geometrie." In Geometrie, 81–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49954-2_4.
Full textConference papers on the topic "Hyperbolisch"
Narimanov, Evgenii E. "Hyperbolic Metamaterials." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qtu2a.1.
Full textNarimanov, Evgenii, and Ishii Satoshi. "Hyperbolic metamaterials." In 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2015. http://dx.doi.org/10.1109/cleopr.2015.7376050.
Full textGomez-Diaz, J. Sebastian, Mykhailo Tymchenko, and Andrea Alu. "Hyperbolic metasurfaces." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7304825.
Full textEasley, Glenn R., Demetrio Labate, and Vishal M. Patel. "Hyperbolic shearlets." In 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6467393.
Full textKHRENNIKOV, ANDREI, and GAVRIEL SEGRE. "HYPERBOLIC QUANTIZATION." In Proceedings of the 26th Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770271_0028.
Full textChira-Oliva, Pedro, and João Carlos R. Cruz. "Seismic stacking methods: hyperbolic and non-hyperbolic traveltime approximations." In 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26-29 August 2013. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2013. http://dx.doi.org/10.1190/sbgf2013-262.
Full textZhang, Chengkun, and Junbin Gao. "Hype-HAN: Hyperbolic Hierarchical Attention Network for Semantic Embedding." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/552.
Full textDurach, Maxim, and David W. Keene. "Hyperbolic Tamm Plasmons." In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fth3e.3.
Full textZayats, Anatoly V. "Nonlinear hyperbolic metamaterials." In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2014. http://dx.doi.org/10.1109/metamaterials.2014.6948585.
Full textKotlyar, V. V., and A. A. Kovalev. "Hyperbolic Airy beams." In 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2013. http://dx.doi.org/10.1109/caol.2013.6657568.
Full textReports on the topic "Hyperbolisch"
Chu, Isaac, Gregory Fu, Mark Steffen, and Matthias Sherwood. Hyperbolic Analysis. Web of Open Science, April 2020. http://dx.doi.org/10.37686/ejai.v1i1.29.
Full textUngar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.
Full textUngar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.
Full textStannard, Casey R., and Paul Callahan. Hyperbolic Honeycomb. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1635.
Full textUngar, Abraham A. The Hyperbolic Triangle Defect. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-225-236.
Full textShearer, Michael. Nonlinear Hyperbolic Conservation Laws. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada184963.
Full textKeyfitz, Barbara L. Nonstrictly Hyperbolic Conservation Laws. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada218525.
Full textHyman, J., M. Shashikov, B. Swartz, and B. Wendroff. Multidimensional methods for hyperbolic problems. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/224954.
Full textUngar, Abraham A. The Relativistic Hyperbolic Parallelogram Law. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-249-264.
Full textSteinhardt, Allan O. Hyperbolic Transforms in Array Processing. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada247061.
Full text