To see the other types of publications on this topic, follow the link: Hyperbolisch.

Journal articles on the topic 'Hyperbolisch'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hyperbolisch.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gehring, Nicole. "Ein systematischer Backstepping-Zugang zur Regelung gekoppelter ODE-PDE-ODE-Systeme." at - Automatisierungstechnik 68, no. 8 (August 27, 2020): 654–66. http://dx.doi.org/10.1515/auto-2020-0030.

Full text
Abstract:
ZusammenfassungDer systematische Zugang zum Backstepping-Entwurf von Zustandsrückführungen für gekoppelte ODE-PDE-ODE-Systeme, die sich zumeist für verteilt-parametrische Prozesse unter Berücksichtigung der Dynamik von Aktoren und Sensoren ergeben, erlaubt nicht nur die sukzessive und vereinfachte Herleitung von bereits bekannten Backstepping-Reglern sondern ermöglicht auch deren Entwurf für bisher nicht betrachtete Systemklassen. Der Zugang nutzt dabei die diesen Systemen inhärente strenge Rückkopplungsform aus. Wie beim klassischen Integrator-Backstepping wird das ODE-PDE-ODE-System schrittweise durch virtuelle Zustandsrückführungen stabilisiert und der Zustand in Fehlerkoordinaten überführt. Der vorgeschlagene, modulare Entwurf ist dabei im Wesentlichen unabhängig davon, ob der verteilt-parametrische Teil des Systems parabolisch oder hyperbolisch ist.
APA, Harvard, Vancouver, ISO, and other styles
2

Yegin, R., and U. Dursun. "On Submanifolds of Pseudo-Hyperbolic Space with 1-Type Pseudo-Hyperbolic Gauss Map." Zurnal matematiceskoj fiziki, analiza, geometrii 12, no. 4 (December 25, 2016): 315–37. http://dx.doi.org/10.15407/mag12.04.315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Glowacki, Elizabeth M., and Mary Anne Taylor. "Health Hyperbolism: A Study in Health Crisis Rhetoric." Qualitative Health Research 30, no. 12 (May 25, 2020): 1953–64. http://dx.doi.org/10.1177/1049732320916466.

Full text
Abstract:
The Ebola virus had only been in the United States for 2 months before it became a major national health concern. However, while some citizens panicked about the looming health crisis, others remained calm, offering explanations for why a rapid spread of the virus was unlikely. Examining the distinctions between these different reactions can contribute to a better understanding of the coping strategies citizens use when facing a health crisis. We consider how citizens respond to fear by focusing on whether or not hyperbolic rhetoric was used as a means for processing and managing fear. Approximately 400 tweets and Facebook posts from the Centers for Disease Control and Prevention, the White House, and The Alex Jones Show were examined to make conclusions about how citizens respond to messages from these mediated forums. At the intersection of health communication and critical rhetoric, we advance an operational definition of health hyperbolism derived from public response to opinion leaders. Ultimately, we find that health hyperbolism contains language illustrative of distrust, blame, anger, misrepresentation, conspiracy, and curiosity.
APA, Harvard, Vancouver, ISO, and other styles
4

Kostin, A. V., and I. Kh Sabitov. "Smarandache Theorem in Hyperbolic Geometry." Zurnal matematiceskoj fiziki, analiza, geometrii 10, no. 2 (June 25, 2014): 221–32. http://dx.doi.org/10.15407/mag10.02.221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

López Díaz, L. F. "Bóvedas por arista de paraboloides hiperbólicos asimétricos." Informes de la Construcción 50, no. 458 (December 30, 1998): 31–41. http://dx.doi.org/10.3989/ic.1998.v50.i458.877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mosher, Lee. "A hyperbolic-by-hyperbolic hyperbolic group." Proceedings of the American Mathematical Society 125, no. 12 (1997): 3447–55. http://dx.doi.org/10.1090/s0002-9939-97-04249-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuznetsov, S. P. "Generation of Robust Hyperbolic Chaos in CNN." Nelineinaya Dinamika 15, no. 2 (2019): 109–24. http://dx.doi.org/10.20537/nd190201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuznetsov, S. P. "Some Lattice Models with Hyperbolic Chaotic Attractors." Nelineinaya Dinamika 16, no. 1 (2020): 13–21. http://dx.doi.org/10.20537/nd200102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schochet, Steven. "Hyperbolic-hyperbolic singular limits." Communications in Partial Differential Equations 12, no. 6 (January 1987): 589–632. http://dx.doi.org/10.1080/03605308708820504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bawa, Parveen. "Addition Theorems and Nature of Jacobi Hyperbolic Functions." International Journal of Scientific Research 3, no. 6 (June 1, 2012): 250–53. http://dx.doi.org/10.15373/22778179/june2014/79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hlavička, Rudolf. "Finite element solution of a hyperbolic-parabolic problem." Applications of Mathematics 39, no. 3 (1994): 215–39. http://dx.doi.org/10.21136/am.1994.134254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bawa, Parveen. "Polar Angle in Terms of Jacobi Hyperbolic Functions." Paripex - Indian Journal Of Research 3, no. 5 (January 15, 2012): 105–6. http://dx.doi.org/10.15373/22501991/may2014/33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

BAME, Valmir, and Lulezim HANELLI. "Numerical Solution for Semi Linear Hyperbolic Differential Equations." International Journal of Innovative Research in Engineering & Management 6, no. 4 (July 2019): 28–32. http://dx.doi.org/10.21276/ijirem.2019.6.4.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zeitler, H. "Hyperbolische 5-Rechtecke." Teaching Mathematics and Computer Science 1, no. 1 (2003): 111–23. http://dx.doi.org/10.5485/tmcs.2003.0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kroll, Hans-Joachim, and Kay S�rensen. "Hyperbolische R�ume." Journal of Geometry 61, no. 1-2 (February 1998): 141–49. http://dx.doi.org/10.1007/bf01237501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Maldonado, Rafael. "Hyperbolic monopoles from hyperbolic vortices." Nonlinearity 30, no. 6 (May 11, 2017): 2443–65. http://dx.doi.org/10.1088/1361-6544/aa6d95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

De Micheli, Enrico, Irene Scorza, and Giovanni Alberto Viano. "Hyperbolic geometrical optics: Hyperbolic glass." Journal of Mathematical Physics 47, no. 2 (February 2006): 023503. http://dx.doi.org/10.1063/1.2165796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Aizawa, Y. "Commnets on the Generalized Hyperbolic Laws in Psycho-physics." Seibutsu Butsuri 41, supplement (2001): S24. http://dx.doi.org/10.2142/biophys.41.s24_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Priyanka, R., and S. Ramadevi. "A Hyperbolic PDE-ODE System with Delay-Robust Stabilization." International Journal of Trend in Scientific Research and Development Volume-2, Issue-5 (August 31, 2018): 1988–90. http://dx.doi.org/10.31142/ijtsrd17157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Krejčí, Pavel. "A monotonicity method for solving hyperbolic problems with hysteresis." Applications of Mathematics 33, no. 3 (1988): 197–203. http://dx.doi.org/10.21136/am.1988.104302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bawa, Parveen. "Elliptic Functions With A View Toward Jacobi Hyperbolic Functions." Global Journal For Research Analysis 3, no. 4 (June 15, 2012): 66–68. http://dx.doi.org/10.15373/22778160/apr2014/21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gilman, Jane. "Inequalities in Discrete Subgroups of PSL(2, R)." Canadian Journal of Mathematics 40, no. 1 (February 1, 1988): 115–30. http://dx.doi.org/10.4153/cjm-1988-005-x.

Full text
Abstract:
Conditions for a subgroup, F, of PSL(2, R) to be discrete have been investigated by a number of authors. Jørgensen's inequality [5] gives an elegant necessary condition for discreteness for subgroups of PSL(2, C). Purzitsky, Rosenberger, Matelski, Knapp, and Van Vleck, among others [12, 13, 14, 9, 16, 17, 18, 19, 20, 7, 21] studied two generator discrete subgroups of PSL(2, R) in a long series of papers. The complete classification of two generator subgroups was surprisingly complicated and elusive. The most complete result appears in [20].In this paper we use the results of [20] to prove that a nonelementary subgroup F of PSL(2, R) is discrete if and only if every non-elementary subgroup, G, generated by two hyperbolics is discrete (Theorem 5.2) and that F contains no elliptics if and only if each such G is free (Theorem 5.1). Thus, we produce necessary and sufficient conditions for a non-elementary subgroup F of PSL(2, R) to be a discrete group without elliptic elements (Theorem 6.1) or a discrete group containing only hyperbolic elements (Theorem 7.1).
APA, Harvard, Vancouver, ISO, and other styles
23

Gabai, David, G. Meyerhoff, and Nathaniel Thurston. "Homotopy hyperbolic 3-manifolds are hyperbolic." Annals of Mathematics 157, no. 2 (March 1, 2003): 335–431. http://dx.doi.org/10.4007/annals.2003.157.335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lao, Lanjun, and Enzo Orsingher. "Hyperbolic and fractional hyperbolic Brownian motion." Stochastics 79, no. 6 (December 2007): 505–22. http://dx.doi.org/10.1080/17442500701433509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dullin, H. R., and S. Vũ Ngọc. "Symplectic invariants near hyperbolic-hyperbolic points." Regular and Chaotic Dynamics 12, no. 6 (December 2007): 689–716. http://dx.doi.org/10.1134/s1560354707060111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bonk, Mario, and Bruce Kleiner. "Quasi-hyperbolic planes in hyperbolic groups." Proceedings of the American Mathematical Society 133, no. 9 (April 12, 2005): 2491–94. http://dx.doi.org/10.1090/s0002-9939-05-07564-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kostov, Vladimir Petrov. "Very hyperbolic and stably hyperbolic polynomials." Comptes Rendus Mathematique 339, no. 3 (August 2004): 157–62. http://dx.doi.org/10.1016/j.crma.2004.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Patiño, David, and Francisco Gómez-García. "Do Quasi-Hyperbolic Preferences Explain Academic Procrastination? An Empirical Evaluation." Revista Hacienda Pública Española 230, no. 3 (September 2019): 95–124. http://dx.doi.org/10.7866/hpe-rpe.19.3.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kuznetsov, S. P., V. P. Kruglov, and Y. V. Sedova. "Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums." Nelineinaya Dinamika 16, no. 1 (2020): 51–58. http://dx.doi.org/10.20537/nd200105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Blasi, Francesco S. de, Giulio Pianigiani, and Vasile Staicu. "On the solution sets of some nonconvex hyperbolic differential inclusions." Czechoslovak Mathematical Journal 45, no. 1 (1995): 107–16. http://dx.doi.org/10.21136/cmj.1995.128505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tatsuya, Yasuda, Kawahara Genta, and Goto Susumu. "1184 Large-eddy simulation of turbulent hyperbolic-stagnation-point flow." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1184–1_—_1184–5_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1184-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dursun, Uğur, and Rüya Yeğin. "Hyperbolic submanifolds with finite type hyperbolic Gauss map." International Journal of Mathematics 26, no. 02 (February 2015): 1550014. http://dx.doi.org/10.1142/s0129167x15500147.

Full text
Abstract:
We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.
APA, Harvard, Vancouver, ISO, and other styles
33

Rummler, Hansklaus. "Mercatorkarte und hyperbolische Geometrie." Elemente der Mathematik 57, no. 4 (November 2002): 168–73. http://dx.doi.org/10.1007/pl00012483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Grauert, Hans. "Jetmetriken und hyperbolische Geometrie." Mathematische Zeitschrift 200, no. 2 (June 1989): 149–68. http://dx.doi.org/10.1007/bf01230277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

UĞURLU, H., and H. GÜNDOĞAN. "The Cosine Hyperbolic and Sine Hyperbolic Rules for Dual Hyperbolic Spherical Trigonometry." Mathematical and Computational Applications 5, no. 3 (December 1, 2000): 185–90. http://dx.doi.org/10.3390/mca5020185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Harmelin, Reuven. "Hyperbolic metric, curvature of geodesics and hyperbolic discs in hyperbolic plane domains." Israel Journal of Mathematics 70, no. 1 (February 1990): 111–28. http://dx.doi.org/10.1007/bf02807223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cihan, Arzu, Ayşe Zeynep Azak, Mehmet Ali Güngör, and Murat Tosun. "A Study on Dual Hyperbolic Fibonacci and Lucas Numbers." Analele Universitatii "Ovidius" Constanta - Seria Matematica 27, no. 1 (March 1, 2019): 35–48. http://dx.doi.org/10.2478/auom-2019-0002.

Full text
Abstract:
Abstract In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers.
APA, Harvard, Vancouver, ISO, and other styles
38

Panina, Gaiane. "On hyperbolic virtual polytopes and hyperbolic fans." Central European Journal of Mathematics 4, no. 2 (June 2006): 270–93. http://dx.doi.org/10.2478/s11533-006-0006-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mackay, John M., and Alessandro Sisto. "Quasi-hyperbolic planes in relatively hyperbolic groups." Annales Academiae Scientiarum Fennicae Mathematica 45, no. 1 (January 2020): 139–74. http://dx.doi.org/10.5186/aasfm.2020.4511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hamenstädt, Ursula. "Hyperbolic relatively hyperbolic graphs and disk graphs." Groups, Geometry, and Dynamics 10, no. 1 (2016): 365–405. http://dx.doi.org/10.4171/ggd/352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gabai, David. "Homotopy hyperbolic $3$-manifolds are virtually hyperbolic." Journal of the American Mathematical Society 7, no. 1 (January 1, 1994): 193. http://dx.doi.org/10.1090/s0894-0347-1994-1205445-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ma, Wancang, and David Minda. "Hyperbolic linear invariance and hyperbolic k-convexity." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 58, no. 1 (February 1995): 73–93. http://dx.doi.org/10.1017/s1446788700038118.

Full text
Abstract:
AbstractPommerenke initiated the study of linearly invariant families of locally schlicht holomorphic functions defined on the unit disk The concept of linear invariance has proved fruitful in geometric function theory. One aspect of Pommerenke's work is the extension of certain results from classical univalent function theory to linearly invariant functions. We propose a definition of a related concept that we call hyperbolic linear invariance for locally schlicht holomorphic functions that map the unit disk into itself. We obtain results for hyperbolic linearly invariant functions which generalize parts of the theory of bounded univalent functions. There are many similarities between linearly invariant functions and hyperbolic linearly invariant functions, but some new phenomena also arise in the study of hyperbolic linearly invariant functions.
APA, Harvard, Vancouver, ISO, and other styles
43

Gabai, David. "Homotopy Hyperbolic 3-Manifolds are Virtually Hyperbolic." Journal of the American Mathematical Society 7, no. 1 (January 1994): 193. http://dx.doi.org/10.2307/2152726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Felikson, Anna, and Pavel Tumarkin. "Hyperbolic subalgebras of hyperbolic Kac–Moody algebras." Transformation Groups 17, no. 1 (December 29, 2011): 87–122. http://dx.doi.org/10.1007/s00031-011-9169-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bär, Christian. "Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes." Communications in Mathematical Physics 333, no. 3 (July 10, 2014): 1585–615. http://dx.doi.org/10.1007/s00220-014-2097-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhou, Qingxin, Jingbo Xu, and Zhigang Wang. "Hyperbolic worldsheets and worldlines of null Cartan curves in de Sitter 3-space." International Journal of Modern Physics A 36, no. 04 (February 10, 2021): 2150026. http://dx.doi.org/10.1142/s0217751x21500263.

Full text
Abstract:
The hyperbolic worldsheets and the hyperbolic worldline generated by null Cartan curves are defined and their geometric properties are investigated. As applications of singularity theory, the singularities of the hyperbolic worldsheets and the hyperbolic worldline are classified by using the approach of the unfolding theory in singularity theory. It is shown that under appropriate conditions, the hyperbolic worldsheet is diffeomorphic to cuspidal edge or swallowtail type of singularity and the hyperbolic worldline is diffeomorphic to cusp. An important geometric invariant which has a close relation with the singularities of the hyperbolic worldsheets and worldlines is found such that the singularities of the hyperbolic worldsheets and worldlines can be characterized by the invariant. Meanwhile, the contact of the spacelike normal curve of a null Cartan curve with hyperbolic quadric or world hypersheet is discussed in detail. In addition, the dual relationships between the spacelike normal curve of a null Cartan curve and the hyperbolic worldsheet are described. Moreover, it is demonstrated that the spacelike normal curve of a null Cartan curve and the hyperbolic worldsheet are [Formula: see text]-dual each other.
APA, Harvard, Vancouver, ISO, and other styles
47

YONEDA, GEN, and HISA-AKI SHINKAI. "CONSTRUCTING HYPERBOLIC SYSTEMS IN THE ASHTEKAR FORMULATION OF GENERAL RELATIVITY." International Journal of Modern Physics D 09, no. 01 (February 2000): 13–34. http://dx.doi.org/10.1142/s0218271800000037.

Full text
Abstract:
Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.
APA, Harvard, Vancouver, ISO, and other styles
48

IZUMIYA, SHYUICHI, DONGHE PEI, and TAKASI SANO. "SINGULARITIES OF HYPERBOLIC GAUSS MAPS." Proceedings of the London Mathematical Society 86, no. 2 (March 2003): 485–512. http://dx.doi.org/10.1112/s0024611502013850.

Full text
Abstract:
In this paper we adopt the hyperboloid in Minkowski space as the model of hyperbolic space. We define the hyperbolic Gauss map and the hyperbolic Gauss indicatrix of a hypersurface in hyperbolic space. The hyperbolic Gauss map has been introduced by Ch. Epstein [J. Reine Angew. Math. 372 (1986) 96–135] in the Poincaré ball model, which is very useful for the study of constant mean curvature surfaces. However, it is very hard to perform the calculation because it has an intrinsic form. Here, we give an extrinsic definition and we study the singularities. In the study of the singularities of the hyperbolic Gauss map (indicatrix), we find that the hyperbolic Gauss indicatrix is much easier to calculate. We introduce the notion of hyperbolic Gauss–Kronecker curvature whose zero sets correspond to the singular set of the hyperbolic Gauss map (indicatrix). We also develop a local differential geometry of hypersurfaces concerning their contact with hyperhorospheres.2000 Mathematical Subject Classification: 53A25, 53A05, 58C27.
APA, Harvard, Vancouver, ISO, and other styles
49

Poláčik, P. "Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations." Mathematica Bohemica 127, no. 2 (2002): 301–10. http://dx.doi.org/10.21136/mb.2002.134162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Munazza Zulfiqar Ali, Munazza Zulfiqar Ali, Ashfaq Ahmad Bhatti Ashfaq Ahmad Bhatti, Qamar ul Haque Qamar ul Haque, and Shahzad Mahmood Shahzad Mahmood. "Global transmission diagrams for evanescent waves in a nonlinear hyperbolic metamaterial." Chinese Optics Letters 13, no. 9 (2015): 090601–90605. http://dx.doi.org/10.3788/col201513.090601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography