Journal articles on the topic 'Hyperelastic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hyperelastic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhu, Hai Qing, and Xie Dong Zhang. "Calculation of Static Stiffness of Hyperelastic Coating." Applied Mechanics and Materials 395-396 (September 2013): 810–13. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.810.
Full textTurhan, Tunahan. "On geometry of Lorentzian immersions with non-null hyperelastic curves." Filomat 38, no. 21 (2024): 7469–78. https://doi.org/10.2298/fil2421469t.
Full textPàmies, Pep. "Hyperelastic nanowires." Nature Materials 12, no. 10 (2013): 870. http://dx.doi.org/10.1038/nmat3771.
Full textDastjerdi, Maryam Mehdizadeh, Ali Fallah, and Saeid Rashidi. "Efficient Sensitivity Based Reconstruction Technique to Accomplish Breast Hyperelastic Elastography." BioMed Research International 2018 (November 25, 2018): 1–16. http://dx.doi.org/10.1155/2018/3438470.
Full textChen, Wei, Lin Wang, and Huliang Dai. "Nonlinear Free Vibration of Hyperelastic Beams Based on Neo-Hookean Model." International Journal of Structural Stability and Dynamics 20, no. 01 (2019): 2050015. http://dx.doi.org/10.1142/s0219455420500157.
Full textYenigun, Burak, Elli Gkouti, Gabriele Barbaraci, and Aleksander Czekanski. "Identification of Hyperelastic Material Parameters of Elastomers by Reverse Engineering Approach." Materials 15, no. 24 (2022): 8810. http://dx.doi.org/10.3390/ma15248810.
Full textYang, Qing Sheng, and Fang Xu. "Effective Hyperelastic Behaviour of Fiber Reinforced Polymer Composite Materials." Key Engineering Materials 334-335 (March 2007): 473–76. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.473.
Full textNarendra Gokhale, Maitreya. "Hyperelastic Material Modelling of Silicone Rubber." International Journal of Science and Research (IJSR) 12, no. 7 (2023): 2069–73. http://dx.doi.org/10.21275/sr23726173228.
Full textHe, Wangyang, and Zhennan Zhang. "Modeling Creep Fracture in Rock by Using Kelvin Discretized Virtual Internal Bond." Advances in Civil Engineering 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/8042965.
Full textKarimi Mahabadi, Rayehe, Taha Goudarzi, Romain Fleury, and Reza Naghdabadi. "Multifunctional Hyperelastic Structured Surface for Tunable and Switchable Transparency." Applied Sciences 11, no. 5 (2021): 2255. http://dx.doi.org/10.3390/app11052255.
Full textYücesan, Ahmet, Gözde Özkan, and Yasemín Yay. "Relaxed hyperelastic curves." Annales Polonici Mathematici 102, no. 3 (2011): 223–30. http://dx.doi.org/10.4064/ap102-3-3.
Full textAnsari, Mohd Zahid, Sang Kyo Lee, and Chong Du Cho. "Hyperelastic Muscle Simulation." Key Engineering Materials 345-346 (August 2007): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1241.
Full textLanzoni, Luca, and Angelo Marcello Tarantino. "Damaged hyperelastic membranes." International Journal of Non-Linear Mechanics 60 (April 2014): 9–22. http://dx.doi.org/10.1016/j.ijnonlinmec.2013.12.001.
Full textTükel, Gözde Özkan, and Tunahan Turhan. "Timelike hyperelastic strips." AIMS Mathematics 10, no. 5 (2025): 12299–311. https://doi.org/10.3934/math.2025557.
Full textGolbad, Sara, and Mohammad Haghpanahi. "Hyperelastic Model Selection of Tissue Mimicking Phantom Undergoing Large Deformation and Finite Element Modeling for Elastic and Hyperelastic Material Properties." Advanced Materials Research 415-417 (December 2011): 2116–20. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.2116.
Full textSelvadurai, A. P. S., and A. P. Suvorov. "On the development of instabilities in an annulus and a shell composed of a poro-hyperelastic material." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2218 (2018): 20180239. http://dx.doi.org/10.1098/rspa.2018.0239.
Full textXu, Bing, Qin Shu He, and Shao Rong Yu. "Finite Element Analysis on the Large Deformations of Rubber Structure." Applied Mechanics and Materials 44-47 (December 2010): 1487–91. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1487.
Full textKarimzadeh, Atefeh, Majid Reza Ayatollahi, Seyed Saeid Rahimian Koloor, Abd Razak Bushroa, Mohd Yazid Yahya, and Mohd Nasir Tamin. "Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models." Polymers 11, no. 10 (2019): 1571. http://dx.doi.org/10.3390/polym11101571.
Full textSanborn, Brett, Bo Song, and Wei-Yang Lu. "Poisson‘s Ratio Induced Radial Inertia Confinement During Dynamic Compression of Hyperelastic Foams." EPJ Web of Conferences 183 (2018): 02007. http://dx.doi.org/10.1051/epjconf/201818302007.
Full textWu, Bin, Chenfeng Huang, Na Li, et al. "Formulation of Hyperelastic Constitutive Model for Human Periodontal Ligament Based on Fiber Volume Fraction." Materials 18, no. 3 (2025): 705. https://doi.org/10.3390/ma18030705.
Full textWang, Hong, and Gen Yan Wang. "Mechanical Response of Ping-Pong Racket to Different Hyperelastic Surface Materials." Advanced Materials Research 941-944 (June 2014): 1566–69. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.1566.
Full textTükel, Gözde Özkan. "Integrable dynamics and geometric conservation laws of hyperelastic strips." AIMS Mathematics 9, no. 9 (2024): 24372–84. http://dx.doi.org/10.3934/math.20241186.
Full textWang, Jiong, Qiongyu Wang, Hui-Hui Dai, Ping Du, and Danxian Chen. "Shape-programming of hyperelastic plates through differential growth: an analytical approach." Soft Matter 15, no. 11 (2019): 2391–99. http://dx.doi.org/10.1039/c9sm00160c.
Full textOzelo, R. R. M., P. Sollero, and A. L. A. Costa. "An Alternative Technique to Evaluate Crack Propagation Path in Hyperelastic Materials." Tire Science and Technology 40, no. 1 (2012): 42–58. http://dx.doi.org/10.2346/1.3684484.
Full textWrubleski, Eduardo Guilherme Mötke, and Rogério Marczak. "A new pseudo-energy function to simulate the Mullins effect." Journal of Elastomers & Plastics 50, no. 6 (2017): 554–75. http://dx.doi.org/10.1177/0095244317741760.
Full textThiagarajan, Ganesh, Yonggang Y. Huang, and K. Jimmy Hsia. "Fracture Simulation Using an Elasto-Viscoplastic Virtual Internal Bond Model With Finite Elements." Journal of Applied Mechanics 71, no. 6 (2004): 796–804. http://dx.doi.org/10.1115/1.1796451.
Full textDai, Ming, Peter Schiavone, and Cun-Fa Gao. "Neutral nano-inhomogeneities in hyperelastic materials with a hyperelastic interface model." International Journal of Non-Linear Mechanics 87 (December 2016): 38–42. http://dx.doi.org/10.1016/j.ijnonlinmec.2016.09.010.
Full textToobunterng, Thaman, Chakrit Suvanjumrat, and Jaroonrut Prinyakupt. "Finite Element Analysis on Comparative Hyperelastic Material for CTSIB Foam." Materials Science Forum 1108 (December 12, 2023): 31–36. http://dx.doi.org/10.4028/p-vqv9gi.
Full textÇalışkan, Kemal, Erhan Ilhan Konukseven (1), and Y. Samim Ünlüsoy. "Product Based Material Testing for Hyperelastic Suspension Jounce Bumper Design with FEA." Key Engineering Materials 450 (November 2010): 119–23. http://dx.doi.org/10.4028/www.scientific.net/kem.450.119.
Full textFu, Xin Tao, Ze Peng Wang, and Lian Xiang Ma. "Numerical Mechanical Analysis of Filled Rubber under Different Deformation States Based on a New Hyperelastic Constitutive Model." Materials Science Forum 1032 (May 2021): 15–22. http://dx.doi.org/10.4028/www.scientific.net/msf.1032.15.
Full textNam, Tran Huu. "Using FEM for large deformation analysis of inflated air-spring cylindrical shell made of rubber-textile cord composite." Vietnam Journal of Mechanics 28, no. 1 (2006): 10–20. http://dx.doi.org/10.15625/0866-7136/28/1/5474.
Full textZouari, R., S. Ben Amar, and A. Dogui. "Experimental Analysis and Orthotropic Hyperelastic Modelling of Textile Woven Fabric." Journal of Engineered Fibers and Fabrics 9, no. 3 (2014): 155892501400900. http://dx.doi.org/10.1177/155892501400900310.
Full textSuchocki, Cyprian. "A Finite Element Implementation of Knowles Stored-Energy Function: Theory, Coding and Applications." Archive of Mechanical Engineering 58, no. 3 (2011): 319–46. http://dx.doi.org/10.2478/v10180-011-0021-7.
Full textLe Nguyen, Hoai Linh, Vay Siu Lo, Thien Tich Truong, and Nha Thanh Nguyen. "Nonlinear analysis of three-dimensional hyperelastic problems using radial point interpolation method." Vietnam Journal of Science and Technology 62, no. 5 (2024): 1031–43. http://dx.doi.org/10.15625/2525-2518/19248.
Full textAdam Mohd Adnan, Zurri, Mohd Azman Yahaya, Mohd Nor Fazli Adull Manan, and Jamaluddin Mahmud. "Quantifying and Comparing the Hyperelastic Properties of Skin, Leather and Silicone." International Journal of Engineering & Technology 7, no. 4.26 (2018): 45–49. http://dx.doi.org/10.14419/ijet.v7i4.26.22135.
Full textDastjerdi, Maryam Mehdizadeh, Ali Fallah, and Saeid Rashidi. "An Iterative Method for Estimating Nonlinear Elastic Constants of Tumor in Soft Tissue from Approximate Displacement Measurements." Journal of Healthcare Engineering 2019 (January 6, 2019): 1–12. http://dx.doi.org/10.1155/2019/2374645.
Full textRugsaj, Ravivat, and Chakrit Suvanjumrat. "Finite Element Analysis of Hyperelastic Material Model for Non-Pneumatic Tire." Key Engineering Materials 775 (August 2018): 554–59. http://dx.doi.org/10.4028/www.scientific.net/kem.775.554.
Full textJiang, Yuheng, Yu Tian, and Yao Qi. "Solitary Wave Solutions of a Hyperelastic Dispersive Equation." Mathematics 12, no. 4 (2024): 564. http://dx.doi.org/10.3390/math12040564.
Full textSemenov A. V et al.,, Semenov A. V. et al ,. "Viscous Hyperelastic Materials Modeling." International Journal of Mechanical and Production Engineering Research and Development 10, no. 3 (2020): 14951–68. http://dx.doi.org/10.24247/ijmperdjun20201425.
Full textŞahin, Bayram, Gözde Özkan Tükel, and Tunahan Turhan. "Hyperelastic curves along immersions." Miskolc Mathematical Notes 22, no. 2 (2021): 915. http://dx.doi.org/10.18514/mmn.2021.3501.
Full textSaavedra Flores, E. I., R. M. Ajaj, S. Adhikari, I. Dayyani, M. I. Friswell, and Rafael Castro-Triguero. "Hyperelastic tension of graphene." Applied Physics Letters 106, no. 6 (2015): 061901. http://dx.doi.org/10.1063/1.4908119.
Full textZhang, Pu, and William J. Parnell. "Hyperelastic antiplane ground cloaking." Journal of the Acoustical Society of America 143, no. 5 (2018): 2878–85. http://dx.doi.org/10.1121/1.5036629.
Full textSuvorov, A. P., and A. P. S. Selvadurai. "On poro-hyperelastic shear." Journal of the Mechanics and Physics of Solids 96 (November 2016): 445–59. http://dx.doi.org/10.1016/j.jmps.2016.08.006.
Full textSelvadurai, APS, and Alexander P. Suvorov. "On Poro-hyperelastic Torsion." International Journal of Engineering Science 194 (January 2024): 103940. http://dx.doi.org/10.1016/j.ijengsci.2023.103940.
Full textCai, Renye, Frédéric Holweck, Zhi-Qiang Feng, and François Peyraut. "A new hyperelastic model for anisotropic hyperelastic materials with one fiber family." International Journal of Solids and Structures 84 (May 2016): 1–16. http://dx.doi.org/10.1016/j.ijsolstr.2015.11.008.
Full textBartolomé, L., A. Aginagalde, A. B. Martínez, M. A. Urchegui, and W. Tato. "EXPERIMENTAL CHARACTERIZATION AND MODELLING OF LARGE-STRAIN VISCOELASTIC BEHAVIOR OF A THERMOPLASTIC POLYURETHANE ELASTOMER." Rubber Chemistry and Technology 86, no. 1 (2013): 146–64. http://dx.doi.org/10.5254/rct.13.87998.
Full textKamarul Bahrain, Siti Humairah, and Jamaluddin Mahmud. "Parametric Investigation of Mooney-Rivlin Material Constants on Silicone Biocomposite." Materials Science Forum 882 (January 2017): 51–55. http://dx.doi.org/10.4028/www.scientific.net/msf.882.51.
Full textŚliwa-Wieczorek, Klaudia, Bogusław Zając, and Tomasz Kozik. "Tests on the Mechanical Properties of Polymers in the Aspect of an Attempt to Determine the Parameters of the Mooney-Rivlin Hyperelastic Model." Civil and Environmental Engineering Reports 30, no. 2 (2020): 1–14. http://dx.doi.org/10.2478/ceer-2020-0016.
Full textCheng, Jie, and Lucy T. Zhang. "A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials." International Journal of Computational Methods 15, no. 04 (2018): 1850028. http://dx.doi.org/10.1142/s0219876218500287.
Full textZheng, Yanbin, and Chunyun Jiang. "Experimental Investigation of an Incremental Contact Model for Hyperelastic Solids Using an In Situ Optical Interferometric Technique." Lubricants 12, no. 4 (2024): 109. http://dx.doi.org/10.3390/lubricants12040109.
Full text