Contents
Academic literature on the topic 'Hypertension artérielle – Aspect nutritionnel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hypertension artérielle – Aspect nutritionnel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hypertension artérielle – Aspect nutritionnel"
Meaudre, É., A. Montcriol, P. E. Gaillard, N. Kenane, and B. Palmier. "Hypertension artérielle induite par l'amphotéricine B : aspect hémodynamique." Annales Françaises d'Anesthésie et de Réanimation 24, no. 11-12 (November 2005): 1405–6. http://dx.doi.org/10.1016/j.annfar.2005.08.009.
Full textDissertations / Theses on the topic "Hypertension artérielle – Aspect nutritionnel"
Du, Cailar Guilhem. "Hypertrophie ventriculaire gauche et hypertension artérielle : déterminants nutritionnels et hormonaux." Montpellier 1, 1995. http://www.theses.fr/1995MON1T007.
Full textDrouin-Chartier, Jean-Philippe. "Impact de la consommation de produits laitiers sur l'hypertension artérielle essentielle." Master's thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25619.
Full textPouliot-Mathieu, Kat. "Effet antihypertension d'un fromage contenant un composé bioactif : l'acide gamma-aminobutyrique (GABA)." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23238.
Full textLocatelli, Cathy. "Efficacité d'une éducation diététique sur la qualité et le suivi du régime sans sel en cardiologie." Montpellier 1, 1995. http://www.theses.fr/1995MON11076.
Full textBataillard, Alain. "Système immunitaire et pathogénie de l'hypertension artérielle : rôle du thymus chez le rat génétiquement hypertendu de souche lyonnaise." Lyon 1, 1989. http://www.theses.fr/1989LYO1T002.
Full textElvira-Matelot, Emilie. "Mécanismes de régulation de l'expression de WNK1, responsable de l'Hypertension Hyperkaliémique Familiale (FFHt) : vers l'identification de nouveaux mécanismes de la régulation de la pression artérielle, impliquant les micro-ARNs." Paris 6, 2010. http://www.theses.fr/2010PA066280.
Full textShamieh, Said El. "Régulation génétique de la pression artérielle - Une approche de génomique moléculaire relevant l'implication de l'inflammation de faible niveau." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0104/document.
Full textEssential hypertension is a polygenic trait. Discovered genetic variants were shown to have small effects, consequently explaining a tiny fraction (1%) of its phenotypic variation and resulting to a missing heritability. The missing heritability could be explained by gene-gene, gene-environment interactions and DNA methylation. Once conducted, these approaches should be further complemented by transcriptomic analyses, and thereby to reveal the involved molecular pathways. Therefore, we have shown that rs6046G>A in F7 interacted with rs5355C>T in SELE in order to influence systolic blood pressure levels. In the same direction, we have reported two other gene-gene interactions. We have also found the intergenic SNP rs7556897T>C, located between SLC19A3 and CCL20 locus, interacting with obesity in order to influence diastolic blood pressure. In parallel to those studies, we have shown that rs5030878T>C in FPR1 and KL-VS allele in Klotho may be implicated in BP regulation through their interaction with age and antihypertensive drugs respectively. We have also participated to the identification of a novel SNP, the rs2000999G>A explaining up to the half of haptoglobin?s heritablilty, a protein currently under investigation for its antihypertensive role. Finally, we proposed a new category of functional genetic-epigenetic biomarkers, the eMethSNPs. In conclusion, the identified 'functional' interactions show that low-level inflammation is involved in blood pressure regulation
Meloche, Jolyane. "Nouvelles avenues thérapeutiques dans l'hypertension artérielle pulmonaire : un regard sur la réparation des dommages à l'ADN et l'épigénétique." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31446.
Full textPulmonary arterial hypertension (PAH) is a rare clinical condition characterized by a progressive increase in pulmonary vascular resistance leading to right heart failure and death. Histologically, several processes coexist within the pulmonary arteries, including inflammation, vasoconstriction and vascular remodeling. Remodeling of the pulmonary vessel is due to abnormal and uncontrolled growth of resident pulmonary artery smooth muscle cells (PASMC). As such, PAH exhibits some cancer-like characteristics. In spite of recent progress in understanding the pathophysiological mechanisms involved in disease development and progression, as well as major improvements in symptomatic treatments, no substantial modification in the fatal course of this disease has been achieved. The mean survival rate is about 60% 5 years after diagnosis. Therefore, the identification of new targets has become mandatory. PAH is associated with sustained inflammation, oxidative stress, shear stress and pseudo-hypoxia, all known to promote DNA damage. Despite these unfavorable environmental conditions, PAH PASMC exhibit increased proliferation and resistance to apoptosis. Using a translational approach, we highlighted the role for DNA damage signaling and epigenetic mechanisms in the pathophysiology of PAH. Since PAH shares many hallmarks with cancer, we first studied Poly(ADP-ribose) polymerase-1 (PARP-1), a key enzyme in DNA repair mechanisms and in cell survival in the pathophysiology of PAH. In Chapter 2, we demonstrate that PAH is associated with sustained DNA damage leading to PARP-1 activation. Interestingly, we showed that PARP-1 overexpression triggers the expression and activation of transcription factors known to be implicated in PAH progression, such as HIF-1α (Hypoxia-inducible factor 1-alpha) and NFAT (Nuclear factor of activated T-cells). Overexpression of PARP-1 alsoresulted in decreased expression of microRNA miR-204, another key player in the disease. In animal studies, administration of a clinically available PARP-1 inhibitor decreased PAH in two experimental rat models. In addition, PARP-1 inhibitor was more effective than the first-line treatments offered to patients with PAH. In Chapter 3, we investigated the mechanisms by which PARP-1 was overexpressed in PAH. In silico analyses and studies in cancer demonstrated that miR-223 downregulation triggers PARP-1 overexpression. We provided evidence that miR-223 is downregulated in human PAH lungs, distal pulmonary arteries, and isolated PASMC. Furthermore, using a gain and loss of function approach, we showed that increased HIF-1α (hypoxia-inducible factor 1α), which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. We also demonstrated that restoring the expression of miR-223, by using a mimic, allowed to improve pulmonary and cardiac hemodynamic parameters. In Chapter 4, we investigated epigenetic mechanisms downstream of PARP-1 and miR- 204. Interestingly, the epigenetic reader BRD4 (Bromodomain-containing protein 4) is a predicted target of miR-204 and has binding sites on NFAT’s promoter region. In our study, we showed that BRD4 is upregulated in lungs, distal pulmonary arteries and PASMC of PAH patients. Epigenetic readers bind to acetylated histone tails to promote gene transcription. In PAH, we demonstrated that BRD4 increases the expression of oncogenes involved in PAH pathogenesis, such as NFAT, Bcl-2, p21 and Survivin. BRD4 also regulates mitochondrial metabolism of PASMC. Blocking this oncogenic signature led to decreased proliferation and increased apoptosis of PAH-PASMC in a BRD4-dependant manner. In addition, pharmacological or molecular inhibition of BRD4 reversed established PAH in a rat model of the disease. In conclusion, these studies showed a key role for DNA damage signaling and epigenetic mechanisms in PAH pathophysiology. Our studies also offer new therapeutic perspectives for patients with PAH.
Courboulin, Audrey. "Un microarn au coeur de l'hypertension artérielle pulmonaire." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30417/30417.pdf.
Full textPulmonary arterial hypertension (PAH) is characterized by the obstruction of the pulmonary arteries, mainly due to the pro-proliferative and anti-apoptotic phenotype of the pulmonary artery smooth muscle cells (PASMC). The progressive increase of pulmonary vascular resistance first leads to an increase of pulmonary pressure and then leads to a right heart failure, which generates patient’s death within few years. Many studies demonstrated the implication of the transcription factor NFAT (nuclear factor of activated T cell), which maintains the pro-proliferative and anti-apoptotic phenotype in PAH-PASMC. However, pathways that lead to the constitutive NFAT activation remain unclear. During my doctorate, I studied mechanisms responsible for the activiation of NFAT in HTAP. We study the role of the microRNA and more exactly to miR-204. Thus, the circulating factors, which are increased in PAH and which decreased miR-204 expression in PAH, via the transcription factor STAT3 activation. Through a positive regulation loop mechanism, the decrease of miR-204 induces an overactivation sustain of STAT3 leading to the pathologique phenotype. Thus, the exogenous increase of miR-204 could treat PAH in vitro as well as in vivo. We demonstrated that miR-204 is able to modulate the expression of the transcription factor Runx2 known to be implicated in calcification. In PAH-PASMC, the decrease of miR-204 is associated to an increase of Runx2 expression, known as positive regulator of the HIF-1 activation implicated in PAH. Thus miR-204 modulations affected the proliferation and apoptosis of PAH-PASMC through many molecular axes. Finaly we reveal the implication of the transcription factor Kruppel Like Factor 5 (KLF5) in PAH. The KLF5 overexpressed in PAH is associated to the STAT3 activation, wherease its inhibition decreased the proliferation and promoted apoptosis in PAH-PASMC. In vivo, si KLF5 reversed PAH by decreasing pulmonary pressures, right ventricular hypertrophy, proliferation and increasing apoptosis in PASMC from distal PA. Finally, I studied many aspects implicated in PAH development and especially the STAT3/NFAT axis activation. We showed that targeting this pathway using many technics (mimic miR-204, siRunx2, siSTAT3, siKLF5) seem to be an interesting strategy to treat PAH. Key words: Pulmonary arterial hypertension, therapeutic, proliferation, apoptosis, microRNA, and transcription factor.
Lampron, Marie-Claude. "Implication de PIM1 dans la réparation de l'ADN par la jonction d'extrémités non-homologues en hypertension artérielle pulmonaire." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/29957.
Full textRATIONALE: Pulmonary Arterial Hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PA) due to vascular remodeling. It is now established that this phenotype is associated with enhanced pulmonary artery smooth muscle cells (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMC to survive despite the environmental stresses seen in PAH. PIM1 is an oncoprotein upregulated in PAH and that has been implicated in many pro-survival pathways in cancer, including DNA repair. PIM1 inhibitors, like SGI-1776, are already in clinical trials in cancer and could thus be beneficial to PAH patients. OBJECTIVES: The aim of this study is to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by SGI-1776 in human PAH-PASMC and in rat preclinical model of PAH. METHODS/RESULTS: Using western blot we showed in both human PAH lungs (n=10) and PAH-PASMC (n=5) a significant upregulation of PIM1 compared to control donor (n=5). PIM1 upregulation in PAH was associated with a significant activation of DNA damage sensor (γH2AX), which is critical for DNA repair initiation. We showed that PIM1 inhibition using SGI-1776 (1,3, and 5μM) significantly impaired DNA repair capacity in PASMC (n=4) with a significant repression of Ku70, DNA-PKcs, and γH2AX and decreased ATM expression. We showed no diminution of DNA damage with SGI-1776 treatment (Comet Assay, n=3). As expected, the lack of DNA repair in SGI-1776 treated PAH-PASMC lead to a significant reduction in proliferation (Ki67 n=3; p<0.05) and resistance to apoptosis (AnnexinV assay n=3; p<0.05). In vivo, SGI-1776 10mg*kg-1 given 3 times a week, improves significantly (n=30; p<0.05) monocrotaline-induced PH (decreased RVSP, mean PA pressures and vascular remodeling). CONCLUSION: We demonstrated for the first time that PIM1 is implicated in DNA repair signaling in PAH-PASMC and that repressing its activity everses PAH both in vitro and in vivo.
Books on the topic "Hypertension artérielle – Aspect nutritionnel"
MacGregor, Graham. Salt, diet and health: Neptune's poisoned chalice : the origins of high blood pressure. Cambridge: Cambridge University Press, 1998.
Find full text1933-, Simopoulos Artemis P., ed. Nutrients in the control of metabolic diseases. Basel: Karger, 1992.
Find full text