To see the other types of publications on this topic, follow the link: Hypoellipticité.

Dissertations / Theses on the topic 'Hypoellipticité'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Hypoellipticité.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel." Thesis, Paris, ENST, 2012. http://www.theses.fr/2012ENST0029/document.

Full text
Abstract:
Ce travail de thèse est consacré à l'extension de la formule d'Itô au cas de chemins à variations bornées à valeurs dans l'espace des distributions tempérées composés par des processus réguliers au sens de Malliavin. On s'attache en particulier à faire des hypothèses de régularité minimales, ce qui donne accès à un certain nombre d'applications de notre principal résultat, en particulier à l'étude d'un problème variationnel. Le premier chapitre est consacré à des rappels de calcul de Malliavin. Le deuxième donne des résultats sur la topologie sur la classe de Schwartz et l'espace des distributions tempérées. Dans le troisième chapitre, on donne des conditions optimales sous lesquelles on peut définir la composition d'une distribution tempérée par une variable aléatoire et quelle est la régularité au sens de Malliavin de l'objet ainsi construit. Des techniques d'interpolation permettent d'obtenir des résultats pour des espaces fractionnaires. On donne également des résultats pour le cas où la distribution est elle-même stochastique. Ces résultats nous permettent d'écrire, au chapitre 4, une formule d'Ito faible s'appliquant sous des hypothèses beaucoup plus faibles que celles généralement proposées dans la littérature. On donne aussi une version anticipative et une formule de type Ito-Wentzell. On donne des résultats plus précis dans le cas où le processus auquel on applique notre formule est la solution d'une EDS simple et on applique ce résultat à l'étude de la régularité du temps local en dimension quelconque. Enfin le cinquième chapitre résout un problème variationnel simple en affaiblissant considérablement une hypothèse d'ellipticité faite par la plupart des auteurs
This dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Chuqi. "Equations de Fokker-Planck cinétiques : hypocoercivité et hypoellipticité." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED040.

Full text
Abstract:
Cette thèse porte principalement sur l’hypocoercivité et le comportement à long terme d’équations cinétiques. Nous considérons d’abord l’équation cinétique de Fokker-Planck avec la force de confinement faible et une classe de force générale. Nous prouvons l’existence et l’unicité d’un équilibre normalisé positif (dans le cas d’une force générale) et établissons un certain taux exponentiel ou sous-géométrique de convergence vers l’équilibre (et le taux peut être explicitement calculé). Ensuite, nous étudions la convergence vers l’équilibre de la relaxation Boltzmann linéaire (également appelé BGK linéaire) et le équations de Boltzmann linéaire soit sur le tore ou sur tout l’espace avec un confinement potentiel.Nous présentons des résultats de convergence explicites au normes de variation total ou de variation totale pondérée.Les taux de convergence sont exponentiels lorsque les équations sont posées sur le tore ou avec un potentiel de confinement grandir au moins quadratiquement à l’infini. De plus, nous donnons taux de convergence algébrique lorsque les potentiels sousquadratiqué pris en considération. Nous utilisons le théorème de Harris
This thesis mainly study the hypocoercivity and long time behaviour of kinetic equations. We first consider the kinetic Fokker-Planck equation with weak confinement force and a class of general force. We prove the existence and uniqueness of a positive normalized equilibrium (in the case of a general force) and establish some exponential rate or sub-geometric rate of convergence to the equilibrium (and the rate can be explicitly computed). Then we study convergence to equilibriumof the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus or on the whole space with a confining potential. We present explicit convergence results in total variation or weighted total variation norms. The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method known as Harris’s Theorem
APA, Harvard, Vancouver, ISO, and other styles
3

Pigato, Paolo. "Tube estimates for hypoelliptic diffusions and scaling properties of stochastic volatility models." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1029/document.

Full text
Abstract:
Dans cette thèse on aborde deux problèmes. Dans la première partie on considère des diffusions hypoelliptiques, à la fois sur une condition d'Hormander forte et faible. On trouve des estimations gaussiennes pour la densité de la loi de la solution à un temps court fixé. Un outil fondamental pour prouver ces estimations est le calcul de Malliavin, et en particulier on utilise des techniques développées récemment pour faire face à des problèmes de dégénérescence. Ensuite, grâce à ces estimations en temps court, on trouve des bornes inférieures et supérieures exponentielles sur la probabilité que la diffusion reste dans un petit tube autour d'une trajectoire déterministe jusqu'à un moment fixé. Dans ce cadre hypoelliptique, la forme du tube doit tenir compte du fait que la diffusion se déplace avec une vitesse différente dans les directions du coefficient de diffusion et dans les directions des crochets de Lie. Pour cette raison, on introduit une norme qui prend en compte ce comportement anisotrope, qui peut être adaptée aux cas d'Hormander fort et faible. Dans le cas Hormander fort on établit un lien entre cette norme et la distance de contrôle classique. Dans le cas Hormander faible on introduit une distance de contrôle équivalente appropriée. Dans la deuxième partie de la thèse, on travaille avec des modèles à volatilité stochastique avec retour à la moyenne, oú la volatilité est dirigée par un processus de saut. On suppose d'abord que les sauts suivent un processus de Poisson, et on considère la décroissance des corrélations croisées, théoriquement et empiriquement. Ceci nous amène à étudier un algorithme pour la détection de sauts de la volatilité. On considère ensuite un phénomène plus subtil largement observé dans les indices financiers: le "multiscaling" des moments, c'est-à-dire le fait que les moments d'ordre q des log-incréments du prix sur un temps h, ont une amplitude d'ordre h à une certaine puissance, qui est non linéaire dans q. On travaille avec des modèles oú la volatilité suit une EDS avec retour à la moyenne dirigée par un subordinateur de Lévy. On montre que le multiscaling se produit si la mesure caractéristique du Lévy a des queues de loi de puissance et le retour à la moyenne est superlinéaire à l'infini. Dans ce cas l'exposant de scaling est linéaire par morceaux
In this thesis we address two problems. In the first part we consider hypoelliptic diffusions, under both strong and weak Hormander condition. We find Gaussian estimates for the density of the law of the solution at a fixed, short time. A main tool to prove these estimates is Malliavin Calculus, in particular some techniques recently developed to deal with degenerate problems. We then use these short-time estimates to show exponential two-sided bounds for the probability that the diffusion remains in a small tube around a deterministic path up to a given time. In our hypoelliptic framework, the shape of the tube must reflect the fact the diffusion moves with a different speed in the direction of the diffusion coefficient and in the direction of the Lie brackets. For this reason we introduce a norm accounting of this anisotropic behavior, which can be adapted to both the strong and weak Hormander framework. We establish a connection between this norm and the standard control distance in the strong Hormander case. In the weak Hormander case, we introduce a suitable equivalent control distance. In the second part of the thesis we work with mean reverting stochastic volatility models, with a volatility driven by a jump process. We first suppose that the jumps follow a Poisson process, and consider the decay of cross asset correlations, both theoretically and empirically. This leads us to study an algorithm for the detection of jumps in the volatility profile. We then consider a more subtle phenomenon widely observed in financial indices: the multiscaling of moments, i.e. the fact that the q-moment of the log-increment of the price on a time lag of length h scales as h to a certain power of q, which is non-linear in q. We work with models where the volatility follows a mean reverting SDE driven by a Lévy subordinator. We show that multiscaling occurs if the characteristic measure of the Lévy has power law tails and the mean reversion is super-linear at infinity. In this case the scaling function is piecewise linear
APA, Harvard, Vancouver, ISO, and other styles
4

Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel." Electronic Thesis or Diss., Paris, ENST, 2012. http://www.theses.fr/2012ENST0029.

Full text
Abstract:
Ce travail de thèse est consacré à l'extension de la formule d'Itô au cas de chemins à variations bornées à valeurs dans l'espace des distributions tempérées composés par des processus réguliers au sens de Malliavin. On s'attache en particulier à faire des hypothèses de régularité minimales, ce qui donne accès à un certain nombre d'applications de notre principal résultat, en particulier à l'étude d'un problème variationnel. Le premier chapitre est consacré à des rappels de calcul de Malliavin. Le deuxième donne des résultats sur la topologie sur la classe de Schwartz et l'espace des distributions tempérées. Dans le troisième chapitre, on donne des conditions optimales sous lesquelles on peut définir la composition d'une distribution tempérée par une variable aléatoire et quelle est la régularité au sens de Malliavin de l'objet ainsi construit. Des techniques d'interpolation permettent d'obtenir des résultats pour des espaces fractionnaires. On donne également des résultats pour le cas où la distribution est elle-même stochastique. Ces résultats nous permettent d'écrire, au chapitre 4, une formule d'Ito faible s'appliquant sous des hypothèses beaucoup plus faibles que celles généralement proposées dans la littérature. On donne aussi une version anticipative et une formule de type Ito-Wentzell. On donne des résultats plus précis dans le cas où le processus auquel on applique notre formule est la solution d'une EDS simple et on applique ce résultat à l'étude de la régularité du temps local en dimension quelconque. Enfin le cinquième chapitre résout un problème variationnel simple en affaiblissant considérablement une hypothèse d'ellipticité faite par la plupart des auteurs
This dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
APA, Harvard, Vancouver, ISO, and other styles
5

Pigato, Paolo. "Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424189.

Full text
Abstract:
In this thesis we address two problems. In the first part we consider hypoelliptic diffusions, under both strong and weak Hormander condition. We find Gaussian estimates for the density of the law of the solution at a fixed, short time. A main tool to prove these estimates is Malliavin Calculus, in particular some techniques recently developed to deal with degenerate problems. We then use these short-time estimates to show exponential two-sided bounds for the probability that the diffusion remains in a small tube around a deterministic path up to a given time. In our hypoelliptic framework, the shape of the tube must reflect the fact the diffusion moves with a different speed in the direction of the diffusion coefficient and in the direction of the Lie brackets. For this reason we introduce a norm accounting of this anisotropic behavior, which can be adapted to both the strong and weak Hormander framework. We establish an equivalence between this norm and the standard control distance in the strong Hormander case. In the weak Hormander case, we introduce a suitable equivalent control distance. In the second part of the thesis we work with mean reverting stochastic volatility models, with a volatility driven by a jump process. We first suppose that the jumps follow a Poisson process, and consider the decay of cross asset correlations, both theoretically and empirically. This leads us to study an algorithm for the detection of jumps in the volatility profile. We then consider a more subtle phenomenon widely observed in financial indices: the multiscaling of moments, i.e. the fact that the q-moment of the log-increment of the price on a time lag of length h scales as h to a certain power of q, which is non-linear in q. We work with models where the volatility follows a mean reverting SDE driven by a Lévy subordinator. We show that multiscaling occurs if the characteristic measure of the Lévy has power law tails and the mean reversion is super-linear at infinity. In this case the scaling function is piecewise linear.
In questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo delle diffusioni ipoellittiche, sia sotto una condizione di Hormander forte che debole. Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga conto di questo comportamento anisotropo, adattabile al caso di Hormander forte e debole. Nel caso Hormander forte stabiliamo un'equivalenza tra questa norma e la distanza di controllo classica. Nel caso Hormander debole introduciamo una distanza di controllo equivalente adeguata. Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadimento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Consideriamo successivamente un fenomeno più sottile largamente osservato negli indici finanziari: il "multiscaling" dei momenti, ovvero il fatto che i momenti d'ordine q dei log-incrementi del prezzo su un tempo h, hanno un'ampiezza di ordine h a una certa potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da un'equazione differenziale stocastica con ritorno alla media, diretta da un subordinatore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all'infinito. In questo caso l'esponente di scaling è lineare a tratti.
APA, Harvard, Vancouver, ISO, and other styles
6

Tartakoff, David S., and Andreas Cap@esi ac at. "Results in Gevrey and Analytic Hypoellipticity." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi967.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wenyi, Chen, and Wang Tianbo. "The hypoellipticity of differential forms on closed manifolds." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2980/.

Full text
Abstract:
In this paper we consider the hypo-ellipticity of differential forms on a closed manifold.The main results show that there are some topological obstruct for the existence of the differential forms with hypoellipticity.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Hua, Wei-Xi Li, and Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shimoda, Taishi. "Hypoellipticity of second order differential operators with sign-changing principal symbols /." Sendai : Tohoku Univ, 2000. http://www.loc.gov/catdir/toc/fy0713/2007329003.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chinni, Gregorio <1980&gt. "Analytic and gevrey (micro-)hypoellipticity for sums of squares: an FBI approach." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/947/1/Tesi_Chinni_Gregorio.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chinni, Gregorio <1980&gt. "Analytic and gevrey (micro-)hypoellipticity for sums of squares: an FBI approach." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/947/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hurth, Tobias. "Invariant densities for dynamical systems with random switching." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52274.

Full text
Abstract:
We studied invariant measures and invariant densities for dynamical systems with random switching (switching systems, in short). These switching systems can be described by a two-component Markov process whose first component is a stochastic process on a finite-dimensional smooth manifold and whose second component is a stochastic process on a finite collection of smooth vector fields that are defined on the manifold. We identified sufficient conditions for uniqueness and absolute continuity of the invariant measure associated to this Markov process. These conditions consist of a Hoermander-type hypoellipticity condition and a recurrence condition. In the case where the manifold is the real line or a subset of the real line, we studied regularity properties of the invariant densities of absolutely continuous invariant measures. We showed that invariant densities are smooth away from critical points of the vector fields. Assuming in addition that the vector fields are analytic, we derived the asymptotically dominant term for invariant densities at critical points.
APA, Harvard, Vancouver, ISO, and other styles
13

Laguna, Renato Andrielli. "Hipoeliticidade global para campos vetoriais complexos no plano." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28112016-111054/.

Full text
Abstract:
Este trabalho consiste em um estudo sobre a propriedade de hipoeliticidade global para campos vetoriais complexos não singulares no plano. As órbitas de Sussmann de um tal campo desempenham um papel fundamental nesta análise. Mostramos que se todas as órbitas são unidimensionais o campo não é globalmente hipoelítico. Quando o campo apresenta uma órbita bidimensional e ao menos uma órbita unidimensional mergulhada também foi demonstrado que este campo não é globalmente hipoelítico. No caso em que o plano é a única órbita, define-se, como em Hounie (1982), uma determinada relação de equivalência entre pontos em que o campo deixa de ser elítico. As classes de equivalência desta relação são homeomorfas a um ponto, a um intervalo compacto ou a uma semirreta. Se todas as classes de equivalência são compactas, o campo é globalmente hipoelítico. Caso haja uma classe de equivalência fechada e homeomorfa a uma semirreta, o campo não é globalmente hipoelítico.
This work is a study about global hypoellipticity for nonsingular complex vector fields in the plane. Sussmanns orbits play a fundamental role in this analysis. We show that if all the orbits are one-dimensional then the vector field is not globally hypoelliptic. When there exist a two-dimensional orbit and an embedded one-dimensional one then the vector field is not globally hypoelliptic. In the case when the plane is the only orbit, one defines, as in Hounie (1982), a certain equivalence relation between points where the vector field is not elliptic. The equivalence classes are homeomorphic to a single point, a compact interval or a ray. If all the equivalence classes are compact then the vector field is globally hypoelliptic. If there exists an equivalence class that is closed and homeomorphic to a ray then the vector field is not globally hypoelliptic.
APA, Harvard, Vancouver, ISO, and other styles
14

Rodrigues, Nicholas Braun. "Classes de Gevrey em grupos de Lie compactos e aplicações." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-201051/.

Full text
Abstract:
Nesse trabalho estudamos as classes de Gevrey e as ultradistribuições em grupos de Lie compactos, que é a generalização natural do toro no contexto de análise de Fourier. Para tal utilizamos a teoria de vetores Gevrey. Fazemos a caracterização dessas classes via o comportamento da transformada de Fourier como em [DR14], utilizando o operador de Laplace-Beltrami associado à uma métrica específica. Por final fazemos uma aplicação dessa caracterização em um problema de hipoelipticidade global como em [GW73].
In this work we study the Gevrey class of functions and ultrudistribuitions on compact Lie groups, which is the most natural generalization of the torus in the context of Fourier analysis. For such we used the theory of Gevrey vectors. We get a characterization of such class by the behaviour of the Fourier transform, as in [DR14], using the Laplace-Beltrami operator associated to a specific metric. At the end we give an aplication of this characterization in a global hypoellipticity problem as in [GW73].
APA, Harvard, Vancouver, ISO, and other styles
15

Botós, Hugo Cattarucci. "Propriedades globais de uma classe de complexos diferenciais." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102018-112308/.

Full text
Abstract:
Considere a variedade Tn x S1 com coordenadas (t;x) e considere uma 1-forma diferencial fechada e real a(t) em Tn. Neste trabalho consideramos o operador Lpa = dt +a(t) Λ ∂x de D\'p em D\'p+1, onde D\'p é o espaço das p-correntes da forma u = ∑ Ι I Ι = puI (t, x)dtI. O operador acima define um complexo de cocadeia formado pelos espaços vetoriais D\'p e pelos homomorfismos lineares Lpa : D\'p → D\'p+1. Definiremos o que significa resolubilidade global no complexo acima e caracterizaremos para quais 1-formas a o complexo é globalmente resolúvel. Faremos o mesmo com respeito a hipoeliticidade global no primeiro nível do complexo.
Consider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D\'p from D\'p to D\'p+1, where D\'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D\'p and of the linear maps Lpa : D\'p → D\'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.
APA, Harvard, Vancouver, ISO, and other styles
16

Campana, Camilo. "Campos hipoelíticos no plano." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032013-094256/.

Full text
Abstract:
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa
Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
APA, Harvard, Vancouver, ISO, and other styles
17

Nascimento, Moisés Aparecido do. "Hipoelipticidade global de campos vetoriais no toro TN." Universidade Federal de São Carlos, 2010. https://repositorio.ufscar.br/handle/ufscar/5869.

Full text
Abstract:
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1 3207.pdf: 939340 bytes, checksum: b708a600566bb7e50aa91c249a665893 (MD5) Previous issue date: 2010-06-21
In this work, we will see that if the transpose operator of a smooth real vector field L defined on the N-dimensional torus, regarded as a linear differential operator with coefficients in C1(TN), is globally hypoelliptic, then there exists a vector field with constant coefficients L0 such that L and L0 are C1-conjugated, with such constants satisfying a condition called Diofantina (*). We will also show the converse of this fact, that is, if there is a coordinate system such that in this new system L has constant coefficients with such constant satisfying the Diophantine condition (*) then its transpose L* is globally hypoelliptic. We will see that the Diophantine condition implies that the flow generated by the field, regarded as a Dynamical system is minimal.
Neste trabalho, veremos que se o operador transposto de um campo vetorial real suave L definido no toro N-dimensional, visto como um operador diferencial linear com coeficientes em C1(TN), for globalmente hipoelíptico, então existe um campo vetorial com coeficientes constantes L0 tal que L e L0 são C1- conjugados, com tais constantes satisfazendo uma condição chamada de Diofantina (*). Mostraremos também a recíproca deste fato, isto é, se existir um sistema de coordenadas tal que, neste novo sitema L possui coeficientes constantes com tais constantes satisfazendo a condição Diofantina (*) então, seu transposto L* é globalmente hipoelíptico. Veremos que a condição Diofantina implica que, os fluxos gerados pelo campo, vistos como um sistema dinânico, são minimais.
APA, Harvard, Vancouver, ISO, and other styles
18

Dušanka, Perišić. "On Integral Transforms and Convolution Equations on the Spaces of Tempered Ultradistributions." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 1992. https://www.cris.uns.ac.rs/record.jsf?recordId=73337&source=NDLTD&language=en.

Full text
Abstract:
In the thesis are introduced and investigated spaces of Burling and of Roumieu type tempered ultradistributions, which are natural generalization of the space of Schwartz’s tempered distributions in Denjoy-Carleman-Komatsu’s theory of ultradistributions.  It has been proved that the introduced spaces preserve all of the good properties Schwartz space has, among others, a remarkable one, that the Fourier transform maps continuposly the spaces into themselves.In the first chapter the necessary notation and notions are given.In the second chapter, the spaces of ultrarapidly decreasing ultradifferentiable functions and their duals, the spaces of Beurling and of Roumieu tempered ultradistributions, are introduced; their topological properties and relations with the known distribution and ultradistribution spaces and structural properties are investigated;  characterization of  the Hermite expansions  and boundary value representation of the elements of the spaces are given.The spaces of multipliers of the spaces of Beurling and of Roumieu type tempered ultradistributions are determined explicitly in the third chapter.The fourth chapter is devoted to the investigation of  Fourier, Wigner, Bargmann and Hilbert transforms on the spaces of Beurling and of Roumieu type tempered ultradistributions and their test spaces.In the fifth chapter the equivalence of classical definitions of the convolution of Beurling type ultradistributions is proved, and the equivalence of, newly introduced definitions, of ultratempered convolutions of Beurling type ultradistributions is proved.In the last chapter is given a necessary and sufficient condition for a convolutor of a space of tempered ultradistributions to be hypoelliptic in a space of integrable ultradistribution, is given, and hypoelliptic convolution equations are studied in the spaces.Bibliograpy has 70 items.
U ovoj tezi su proučavani prostori temperiranih ultradistribucija Beurlingovog  i Roumieovog tipa, koji su prirodna uopštenja prostora Schwarzovih temperiranih distribucija u Denjoy-Carleman-Komatsuovoj teoriji ultradistribucija. Dokazano je ovi prostori imaju sva dobra svojstva, koja ima i Schwarzov prostor, izmedju ostalog, značajno svojstvo da Furijeova transformacija preslikava te prostore neprekidno na same sebe.U prvom poglavlju su uvedene neophodne oznake i pojmovi.U drugom poglavlju su uvedeni prostori ultrabrzo opadajucih ultradiferencijabilnih funkcija i njihovi duali, prostori Beurlingovih i Rumieuovih temperiranih ultradistribucija; proučavana su njihova topološka svojstva i veze sa poznatim prostorima distribucija i ultradistribucija, kao i strukturne osobine; date su i karakterizacije Ermitskih ekspanzija i graničnih reprezentacija elemenata tih prostora.Prostori multiplikatora Beurlingovih i Roumieuovih temperiranih ultradistribucija su okarakterisani u trećem poglavlju.Četvrto poglavlje je posvećeno proučavanju Fourierove, Wignerove, Bargmanove i Hilbertove transformacije na prostorima Beurlingovih i Rouimieovih temperiranih ultradistribucija i njihovim test prostorima.U petoj glavi je dokazana ekvivalentnost klasičnih definicija konvolucije na Beurlingovim prostorima ultradistribucija, kao i ekvivalentnost novouvedenih definicija ultratemperirane konvolucije ultradistribucija Beurlingovog tipa.U poslednjoj glavi je dat potreban i dovoljan uslov da konvolutor prostora temperiranih ultradistribucija bude hipoeliptičan u prostoru integrabilnih ultradistribucija i razmatrane su neke konvolucione jednačine u tom prostoru.Bibliografija ima 70 bibliografskih jedinica.
APA, Harvard, Vancouver, ISO, and other styles
19

"On hypoellipticity of the Cauchy Riemann operator on weakly pseudoconvex CR manifolds." 2001. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0021-2603200719120139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

李光祥. "On hypoellipticity of the Cauchy Riemann operator on weakly pseudoconvex CR manifolds." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/05559275024571438422.

Full text
Abstract:
碩士
國立臺灣師範大學
數學研究所
90
On hypoellipticity of the @b operator on weakly pseudoconvex CR manifold Let D Cn, n 2, be a CR manifold with smooth boundary, and let r be a smooth defining function for D. Hence, the set {Lk = @r @zn @ @zk − @r @zk @ @zn | k = 1, 2, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector fields on the boundary bD. If D is strongly pseudoconvex, then bD is strongly pseudoconvex CR manifold. For example, we consider the Siegel upper half space = {(z0, zn) 2 Cn | Imzn > |z0|2} Cn. The set {Lk = @ @zk + 2izk @ @zn | k = 1, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector fields on the boundary b . If we choose T = −2i @ @t , then the Levi matrix is the identity matrix. Moreover, the surface b is a strictly pseudoconvex CR manifold. As coordinates for the surface we use Hn = Cn−1 × R 3 (z0, t) 7! (z0, t + i|z0|2); the vector fields pull back to Zk = @ @zk + izk @ @t . The Heisenberg group Hn is a strictly pseudoconvex CR manifold with type (1,0) vector fields spanned by Z1, . . . ,Zn−1. Then we can get b = @b@ b+@ b@b is hypoelliptic on Hn for (0, q)-forms when 1 q n−1. But hypoellipticity of @ b does not always hold on a pseudoconvex CR manifold M which is not strongly pseudoconvex. For example, we consider the domain D = {(z1, z2) 2 C2 | Imz2 > [ReZ1]m,m 4 is even}. Set M to be the boundary bD, and the tangential (1,0) vector field on M is Z = @ @z1 + im 2 xm−1 1 @ @t , where x = Rez1 and z2 = t + is. Let S((z, t); (w, s)) be the Szeg¨o projection from L2(C × R) onto the kernel of Z. Define the distribution K(z, t) = S((z, t); (0, 0)). Then we can prove that K is not analytic away from 0. In the case M = {(z1, z2, z3) 2 C3 | Imz3 = [Rez1]m +|z2|2,m 4 is even}, the tangential (1,0) vector fields are spanned by Z1 = @ @z1 +im 2 xm−1 1 @ @t , and Z2 = @ @z2 +iz2 @ @t . Similarly, the Szeg¨o projection S is the orthogonal projection from L2 onto {f 2 L2 | Z1f = Z2 = 0}. Let J(z1, z2, t) = S((z1, z2, t), (0, 0, 0)). Then we can prove that J is not analytic away from 0, too. Now, we consider M = {(z1, z2) 2 C2 | Imz2 = xm,m 4 is even}. We prove the failure of @b to be analytic hypoelliptic on M directly. We examine f(x) = e2(x+xm) Rx −1 e−4(s+sm)ds , and define f(x + iy, t) = Z 0 −1 e−2ite−2i||1/myf(||1/mx) d . A calculation shows @b@ bf = 0, but @ bf(0 − i, t) is not analytic at t = 0. 1
APA, Harvard, Vancouver, ISO, and other styles
21

Gao, Tingran. "Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics." Diss., 2015. http://hdl.handle.net/10161/9931.

Full text
Abstract:

We introduce Hypoelliptic Diffusion Maps (HDM), a novel semi-supervised machine learning framework for the analysis of collections of anatomical surfaces. Triangular meshes obtained from discretizing these surfaces are high-dimensional, noisy, and unorganized, which makes it difficult to consistently extract robust geometric features for the whole collection. Traditionally, biologists put equal numbers of ``landmarks'' on each mesh, and study the ``shape space'' with this fixed number of landmarks to understand patterns of shape variation in the collection of surfaces; we propose here a correspondence-based, landmark-free approach that automates this process while maintaining morphological interpretability. Our methodology avoids explicit feature extraction and is thus related to the kernel methods, but the equivalent notion of ``kernel function'' takes value in pairwise correspondences between triangular meshes in the collection. Under the assumption that the data set is sampled from a fibre bundle, we show that the new graph Laplacian defined in the HDM framework is the discrete counterpart of a class of hypoelliptic partial differential operators.

This thesis is organized as follows: Chapter 1 is the introduction; Chapter 2 describes the correspondences between anatomical surfaces used in this research; Chapter 3 and 4 discuss the HDM framework in detail; Chapter 5 illustrates some interesting applications of this framework in geometric morphometrics.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography