To see the other types of publications on this topic, follow the link: Hysteresis current control.

Dissertations / Theses on the topic 'Hysteresis current control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 dissertations / theses for your research on the topic 'Hysteresis current control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Hanling. "AVERAGE-VALUE MODELING OF HYSTERESIS CURRENT CONTROL IN POWER ELECTRONICS." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/78.

Full text
Abstract:
Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control. In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless dc motor drives is proposed. It incorporates a slew-rate limitation on the inductor current that occurs naturally in the circuit during large system transients. This new method is compared with existing methods in terms of simulation run time and rms error. The performance is evaluated based on a variety of scenarios, and the simulation results are compared with the results of detailed models. The simulation results show that the proposed model represents the detailed model well and is faster and more accurate than existing methods. The slew-rate limitation model of hysteresis current control accurately captures the salient detail of converter performance while maintaining the computational efficiency of average-value models. Validations in hardware are also presented.
APA, Harvard, Vancouver, ISO, and other styles
2

White, Terence H. "A three-phase hybrid dc-ac inverter system utilizing hysteresis control." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FWhite%5FTerence.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yingying. "Multifrequency Averaging of Hysteresis-Current-Controlled DC-DC Converters." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/67.

Full text
Abstract:
Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. Hysteresis current control has fast response and internal current stability through controlling switches to maintain the current within a given hysteresis band of a given current command. However the state space variables in a hysteresis controlled system cannot be directly approached by multifrequency averaging method because of time varing switching frequency. In this thesis, a method of applying multifrequency averaging to hysteresis current controlled dc-dc converters is proposed. A dc-dc converter model with the application of this method has been successfully developed and validated both in simulation and experiment.
APA, Harvard, Vancouver, ISO, and other styles
4

Baktiono, Surya. "A Study of Field-Oriented Control of a Permanent Magnet Synchronous Generator and Hysteresis Current Control for Wind Turbine Application." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338314559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozkaya, Hasan. "Parallel Active Filter Design, Control, And Implementation." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608438/index.pdf.

Full text
Abstract:
The parallel active filter (PAF) is the modern solution for harmonic current mitigation and reactive power compensation of nonlinear loads. This thesis is dedicated to detailed analysis, design, control, and implementation of a PAF for a 3- phase 3-wire rectifier load. Specifically, the current regulator and switching ripple filter (SRF) are thoroughly investigated. A novel discrete time hysteresis current regulator with multi-rate current sampling and flexible PWM output, DHCR3, is proposed. DHCR3 exhibits a high bandwidth while limiting the maximum switching frequency for thermal stability and its implementation is simple. In addition to the development of DHCR3, in the thesis state of the art current regulation methods are considered and thoroughly compared with DHCR3. Since the current regulator type determines the SRF topology choice, various SRF topologies are considered and a thorough design study is conducted and SRF topology selection and parameter determination methods are presented via numerical examples. Through a PAF designed for a 10kW diode/thyristor rectifier load, the superior performance of DHCR3 is verified through simulations and experiments and via comparison to other current regulators. The sufficient switching ripple attenuation of the SRF structures for the designed PAF system and the overall performance of the designed and built PAF system are demonstrated via detailed computer simulations and laboratory experiments. This thesis aids the PAF current regulator and SRF selection, design, and implementation.
APA, Harvard, Vancouver, ISO, and other styles
6

Ingram, David. "An Evaluation of Harmonic Isolation Techniques for Three Phase Active Filtering." Thesis, University of Canterbury. Electrical and Computer Engineering, 1998. http://hdl.handle.net/10092/1260.

Full text
Abstract:
Recent advances in power electronics have lead to the wide spread adoption of advanced power supplies and energy efficient devices. This has lead to increased levels of harmonic currents in power systems, degrading the performance of electrical machinery and interfering with telecommunication services. Active filters provide a solution to these problems by compensating for the distorted currents drawn by non-linear loads. Optimal methods for controlling these active filters have been determined by computer simulation and experimental implementation. Methods used for isolating the harmonic content of an unbalanced three phase load current were compared by computer simulations. A technique based on the Fast Fourier Transform (FFT) was developed as part of this work and shown to perform favourably. Notch Filtering, Sinusoidal Subtraction, Instantaneous Reactive Power Theory, Synchronous Reference Frame and Fast Fourier Transform methods were simulated. The methods shown to be suitable for compensation of three phase unbalanced loads were implemented in a Digital Signal Processor to evaluate true performance. These methods were Notch Filtering, Sinusoidal Subtraction, Fast Fourier Transform, and a High Pass Filter based method. A completely digital hysteresis current controller for a three phase active filter inverter has been developed and implemented with a Field Programmable Gate Array. This controller interfaces directly to a digital signal processor and is resistant to electromagnetic interference. Results from the experimental hardware verified that the active filter model used for simulation is accurate, and may be used for further development of harmonic isolation methods. A technique using notch filtering gives the best performance for steady loads, with the FFT based technique giving the most flexible operation for a range of load current characteristics. Novel use of the FFT based harmonic isolation technique allows selective cancellation of individual harmonics, with particular application to multiple shunt filters connected in parallel.
APA, Harvard, Vancouver, ISO, and other styles
7

Zare, Firuz. "Multilevel converter structure and control." Thesis, Queensland University of Technology, 2001. https://eprints.qut.edu.au/36142/7/36142_Digitsed%20Thesis.pdf.

Full text
Abstract:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Guangyuan. "Advanced Controllers of Power Electronic Converters in DC Microgrids." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422330.

Full text
Abstract:
To cope with the pressure of climate change and depletion of fossil fuels, distributed power generation based on sustainable and green resources, such as photovoltaic and wind, have been exploited over the past decades. High penetration of renewable energy sources challenges the normal operation of traditional power grids, due to their characteristics of intermittence and uncertainty. To address this issue, an effective way is to aggregate distributed generators, energy storage systems, and customer loads together, as a single entity, that is, the so-called microgrids. Every microgrid is a fully dispatchable unit for grid operators, relieving the strains brought by renewable energy sources. Also, microgrids are able to provide reliable power for customer loads by supporting autonomous operation. Distributed energy resources are linked to microgrids by means of power electronic converters. As most of resources and future appliances are DC in nature, DC microgrids are more appealing than their AC counterparts. They can potentially achieve higher energy conversion efficiency and lower system costs, mainly by minimizing the number of DC-AC and AC-DC power conversion stages. Droop control is a common decentralized solution to implement primary level control. With the droop control method, DC bus voltage is employed to convey the loading condition of DC microgrids, and load power can be automatically allocated among parallel resource converters. This dissertation focuses on performance improvement of droop-controlled converters, mainly in the following three aspects: i) reduction of DC bus capacitance while maintaining tight DC bus voltage regulation; ii) suppression of second-order harmonic current flowing into distributed energy resources; iii) smooth transfer from power flow control to droop control, allowing DC microgrids to seamlessly disconnect from upstream grids. The first aspect: one of the constrains to reduce DC bus capacitance is the voltage surges and sags during load changes. From this point of view, resistive output impedance is a better design option than non-resistive output impedance for resource converters. This is because, given a certain output voltage tolerance band, resistive output impedance allows larger voltage dynamic variations, so that smaller output capacitance can be used. A systematical design approach, including the selection criteria of output capacitance and the design of droop coefficient, is proposed, covering both non-isolated (buck, boost, etc.) and isolated (dual active bridge) DC-DC converters. Following this design method, resistive output impedance can be effectively obtained. On the other hand, hysteresis control is another way to further reduce output capacitance, since it features faster dynamic response than classical PID control. Herein, hysteresis controller is implemented on digital signal processors instead of field programmable gate arrays. The implementation details, including the generation of driving signals for power switches and the effect of non-negligible computation time, are presented. The second aspect: second-order harmonic power is an unavoidable issue in DC microgrids with single-phase inverters/rectifiers. Since droop-controlled converters usually show low output impedance at twice the line frequency, second-order harmonic power can flow into resource sides of converters. In some application like fuel cells, such harmonic current ripples can shorten device lifetime. To prevent the diffusion of second-order harmonic power, this dissertation studies the adoption of notch filter and resonant regulator in control loops. Although these two methods could mitigate second-order harmonic current, they deteriorate the stability performance of converters. In such a case, modified notch filter and modified resonant regulator are proposed to overcome the shortcoming of the traditional schemes. A comparative study is carried out to highlight the advantages of the proposed filter and regulator. The third aspect: there are two limitations of the traditional droop control: one limitation is that the output power of droop-controlled converters is determined by load condition, and the other one is that the power sharing performance of droop control degrades with the presence of interconnecting cable impedance. To enhance the power flexibility and accuracy, a power-based droop controller, which unifies power flow control and droop control, is proposed for resource converters. When grid-interfacing converters impose the DC bus voltage, resource converters could operate with power flow control. When grid-interfacing converters fail, resource converters could work with droop control to stabilize the system. Importantly, the switch from power flow control to droop control can be automatically accomplished without communication or detection schemes. The operation principle, the design criteria, and the power sharing performance of the proposed controller are analyzed comprehensively. All of the above-mentioned proposals are verified by relevant experimental results performing on different laboratory-scale DC microgrid prototypes.
APA, Harvard, Vancouver, ISO, and other styles
9

Magee, Warwick R. "Development of an electromagnetic actuator for active vibration control." Thesis, Queensland University of Technology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Long, Fei. "Three-Dimensional Motion Control and Dynamic Force Sensing of a Magnetically Propelled Micro Particle Using a Hexapole Magnetic Actuator." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452093964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rutkovskiy, Yaroslav. "A Novel Control Method for Grid Side Inverters Under Generalized Unbalanced Operating Conditions." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1610646102417883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Almeida, Lucas Alves de. "Estudo de técnicas de controle de máquinas de relutância chaveada para aplicações em sistemas de acionamentos com velocidade variável." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6837.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-05-25T12:16:21Z No. of bitstreams: 1 lucasalvesdealmeida.pdf: 7514122 bytes, checksum: a0029ec07180541f754e98112ec47b6b (MD5)<br>Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-06-14T11:52:17Z (GMT) No. of bitstreams: 1 lucasalvesdealmeida.pdf: 7514122 bytes, checksum: a0029ec07180541f754e98112ec47b6b (MD5)<br>Made available in DSpace on 2018-06-14T11:52:17Z (GMT). No. of bitstreams: 1 lucasalvesdealmeida.pdf: 7514122 bytes, checksum: a0029ec07180541f754e98112ec47b6b (MD5) Previous issue date: 2018-02-27<br>Sistemas eletromecânicos são de grande importância atualmente, e a procura por maior eficiência e desempenho aliados a um menor custo justificam a busca por alternativas tanto em topologia quanto no controle e acionamento de tais sistemas. A máquina de relutância chaveada é capaz de cumprir estes requisitos e tem despertado o interesse de pesquisadores e empresas nos últimos anos, emergindo como uma alternativa viável em diversas aplicações. Porém, esta máquina possui características singulares. Por conta de sua estrutura duplamente saliente, seu funcionamento correto depende da aplicação de pulsos de corrente por determinados intervalos de tempo, e na sequência correta, seus parâmetros são variáveis no tempo, apresentando um comportamento com características não-lineares. Tais particularidades fazem com que seja difícil controlar o torque destas máquinas, as quais possuem a tendência de apresentar altas oscilações durante a mudança da excitação de cada fase. Este trabalho tem por objetivo contribuir com o estudo da modelagem e do acionamento de uma máquina de relutância chaveada. É apresentada sua modelagem matemática e um modelo de simulação que leva em consideração as não linearidades existentes. Em seguida são apresentadas técnicas de controle de corrente que incluem um regulador de histerese, um controlador PI e um controlador por modos deslizantes. Também é utilizado um método capaz de determinar o momento em que cada fase deve ser acionada, baseado no ângulo do rotor, e uma técnica de variação dos ângulos de acionamento de maneira dinâmica, usados em conjunto com os controladores propostos. O trabalho também caracteriza e apresenta as funções de divisão de torque como uma maneira de reduzir drasticamente as oscilações de torque. São apresentadas as operações como motor e como gerador, bem como um exemplo de aplicação de modo a ilustrar ambos os modos de operação.<br>Electromechanical systems have a huge relevance nowadays, and seeking for improvements in efficiency and performance at the lowest cost make valid to identify topological and control alternatives of these systems. The switched reluctance machine is capable to fulfill such requirements and emerges as an interesting field of research. Academics and industrial works shows that it is a promising alternative in several applications. However, this machine presents unique characteristics, like the doubly salient structure, the necessity to apply phase currents in a sequence determined by the stator/rotor pole ratio, its time variantparameters,andthestrongnonlinearcharacteristics. Suchsingularitiesmaketorque control hard, as it tends to present high ripples and makes a lot of noise. This thesis aims to contribute on switched reluctance machine modeling and drive system. A mathematical model is presented, and also a simulation model that accounts for nonlinearities, making possible to simulate the machine accurately in a computational environment. A hysteresis regulator, a PI controller and a sliding mode controller are designed and simulated. An algorithm to determine when each phase should be excited based on rotor angle is used, and a technique to change such firing angles dynamically is developed that can be used along with current control methods presented. The work also defines and presents torque sharing functions as a way to greatly reduce torque ripple. Motor and generator operation are contemplated, and both modes are illustrated in an application example.
APA, Harvard, Vancouver, ISO, and other styles
13

Masoud, Khalid Hasan. "Circuits and controls for grid-connected inverters." Thesis, Queensland University of Technology, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zadeh, Ramin Agha. "Performance control of distributed generation using digital estimation of signal parameters." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/47011/1/Ramin_Agha_Zadeh_Thesis.pdf.

Full text
Abstract:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
APA, Harvard, Vancouver, ISO, and other styles
15

Nami, Alireza. "A new multilevel converter configuration for high power and high quality applications." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/33216/1/Alireza_Nami_Thesis.pdf.

Full text
Abstract:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
APA, Harvard, Vancouver, ISO, and other styles
16

Arbetter, Barry Steven. "DC-DC converter utilizing hysteretic current-mode control for low-voltage microprocessor systems with power management." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Boora, Arash Abbasalizadeh. "Flexible high-power multi DC-DC converters for train systems." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/33208/1/Arash_Boora_Thesis.pdf.

Full text
Abstract:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
APA, Harvard, Vancouver, ISO, and other styles
18

Gabi, Yasmine. "Modélisation FEM du système de contrôle non destructif 3MA en ligne de production des aciers dual phase." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00749118.

Full text
Abstract:
Les métallurgistes d'ArcelorMittal développent actuellement une nouvelle génération d'aciers " flat carbon" dédiés principalement au domaine automobile (aciers Dual- Phase ou DP). Afin d'augmenter la performance des aciers au carbone, ArcelorMittal développe une stratégie de production intelligente basée sur un contrôle non destructif en ligne de production en utilisant le capteur 3MA (Multi-Parameter Micro-Magnetic Microstructure and Stress Analyzis). Ce système a été développé par l'Institut Fraunhôfer IZFP ; il est dédié à divers domaines d'applications de contrôle non destructifs des aciers en ligne. L'objectif principal de cette recherche est de simuler le comportement magnétique du dispositif industriel 3MA via la méthode des éléments finis. La modélisation du système (dispositif CND et échantillon) présente des difficultés au niveau du maillage et du temps de calcul surtout avec la mise en œuvre du modèle d'hystérésis. En effet, le système présente une géométrie multi échelles spatiale et temporelle. Afin de palier à ces problèmes, une stratégie de calcul a été développée et validée en 2D, en séparant calcul haute fréquence (HF) et basse fréquence (LF). Cette méthode permet d'effectuer des calculs en plusieurs fois et prend moins d'espace mémoire. Le modèle d'hystérésis de Jiles-Atherton a été choisi pour sa précision et a été implémenté dans le code FEM Flux afin de décrire le comportement magnétique du matériau. Les résultats obtenus sont en accord avec les données expérimentales.
APA, Harvard, Vancouver, ISO, and other styles
19

Zorni, Chiara. "Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : de l’expérience au modèle d’interaction." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112031/document.

Full text
Abstract:
La problématique étudiée est le contrôle non destructif par courants de Foucault de matériaux ferromagnétiques à l’aide d’un capteur à magnétorésistance géante (GMR). Durant ces travaux deux aspects complémentaires ont été abordés : l’un concerne la mesure expérimentale pour essayer de quantifier et de s’affranchir du bruit de structure et du champ magnétique rémanent, l’autre le développement d’un modèle numérique d’interaction. En ce qui concerne la partie expérimentale plusieurs études avec un capteur GMR qui présente un intérêt particulier en raison de sa bonne sensibilité à basses fréquences, de sa dynamique et de la relative simplicité de mise en œuvre ont été conduites et ont permis d’identifier et quantifier les phénomènes d’artefacts spécifiques aux matériaux ferromagnétiques : le bruit de structure et le champ magnétique rémanent. Une solution basée sur une combinaison linéaire des données expérimentales obtenues à plusieurs fréquences est appliquée pour atténuer le bruit dû à la structure du matériau. Le champ magnétique rémanent a été analysé expérimentalement et un circuit d’asservissement permettant de fixer un point de polarisation dans la zone de fonctionnement linéaire de la GMR et ainsi d’atténuer les perturbations dues aux champs magnétiques rémanents est mis en place. En parallèle et dans l’optique de développer des outils de simulation permettant de mieux comprendre les phénomènes physiques et ainsi d’optimiser les procédés de contrôle, un modèle numérique d’interaction simulant le cas du contrôle d’une pièce plane ferromagnétique d’une ou plusieurs couches pouvant contenir un ou plusieurs défauts est développé. Il étend un modèle déjà existant dans un cas non-ferromagnétique déjà intégré dans la plateforme de simulation CIVA développé par le CEA-LIST et permettant la simulation du Contrôle Non Destructif par Courants de Foucault. Il est basé sur une méthode d’intégrales de volume (VIM) et l’utilisation des tenseurs ou dyades de Green. La solution est obtenue après la discrétisation du volume de calcul et l’application d’une variante de Galerkin de la Méthode des Moments (MoM). La réponse de la sonde est ensuite calculée en appliquant le théorème de réciprocité de Lorentz. Des collaborations avec deux laboratoires universitaires (le Laboratoire de Génie Électrique de Paris (LGEP) et l’Université de Cassino (Italie)) ont permis de comparer les résultats issus des trois différents modèles sur un cas de la littérature. Les résultats se sont révélés satisfaisants et plusieurs études de convergence ont permis d’analyser la stabilité du modèle<br>The aim of this work is the eddy-current testing (ECT) of ferromagnetic materials within magnetic sensors, such as Giant Magneto-Resistances (GMR). Two complementary aspects have been studied. Experimental measurements have been carried out in order to quantify and minimize the noise coming from the materials structure and residual magnetization. On the other hand, a model has been developed in order to be able to simulate the electromagnetic interactions between a ferromagnetic specimen and the EC probe. The GMR sensors are characterized by high sensitivity at low frequency, large dynamic range and are relatively easy to implement. The studies carried out during this thesis allowed us to identify and analyse the “ghost signals” due to magnetic materials. In order to minimize the noise coming from the materials structure, a linear multi-frequencies combination of experimental signals has been employed successfully and the detection of buried flaws has been improved. The residual magnetization in ferromagnetic materials has been experimentally analyzed and an electronic system has been realized to fix the polarisation point of the sensor in the linear response zone of the GMR. Thus, disturbances caused by residual magnetization are successfully reduced. Beside, in order to develop simulation tools aiming at improving the understanding of experimental signals and optimizing the performances of ECT procedures, a model has been developed to simulate the ECT of planar, stratified and ferromagnetic materials affected with multiple flaws. CEA developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. Following a previous work carried out at the laboratory and already integrated in the simulation platform CIVA, developed at CEA-LIST, the new model extends CIVA functionalities to the ferromagnetic planar case. Simulation results are obtained through the application of the Volume Integral Method (VIM) which involves the dyadic Green’s functions. Two coupled integral equations have to be solved and the numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments (MoM). Finally, the probe response is calculated by application of the Lorentz reciprocity theorem. A collaboration with the University of Cassino (Italy) and Laboratoire de Génie Electrique de Paris (France) allowed us to compare the three models on experimental and numerical results from literature. Results showed a good agreement between the three models and the model stability has been analyzed
APA, Harvard, Vancouver, ISO, and other styles
20

Kuo, Jia-long, and 郭家龍. "Grid Connected Application with Hysteresis Current Control Method." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/02402689351963123620.

Full text
Abstract:
碩士<br>中華科技大學<br>機電光工程研究所碩士班<br>100<br>The application of green energy is an important issue. This study design and implementation the controller for the wind power and the grid connected. The voltage of the wind power should be rectifier, filter, DC to DC converter, and inverter to the alternating current. The hysteresis current controller is application with parallel synchronous operation. The Hysteresis current controller using the grid voltage as reference signal so that the phase of the inverter output current is in phase with the voltage, therefore the output of inverter is unity power factor . There are two steps in this study. The first, Using the PSim software to simulate the system. The Second, design and implement the circuit into a circuit board. In this study, using the grid voltage phase as a reference signal for the inverter current so that the frequency of the inverter output current variations with the grid voltage variations, the results show that the hysteresis current controller can follow the reference command. On the other, the Total harmonic distortion (THD) is Satisfied with the IEEE standard. This research has good contribution for the energy shortage and carbon reduction.
APA, Harvard, Vancouver, ISO, and other styles
21

Hsieh, Ying-Cheng, and 謝英成. "Adjustable Hysteresis Current Control Scheme for Induction Motor Drive." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/33810276516938647117.

Full text
Abstract:
碩士<br>中華科技大學<br>機電光工程研究所碩士班<br>101<br>Abstract The traditional six-switch three-phase (6S3Ph) inverter is used to variable speed drive for AC motors and uninterruptible power systems over the years. However, The current control method in power electronic circuits play an important role, especially the PWM(Pulse Width Modulation) converter is widely used in AC motor drives and continuous AC power supply. The conventional methods including triangular wave or space-vector-based chopper control or hysteresis control, rather the former is a fixed switching frequency, the latter is a variables witching frequency. This thesis presents an adjustable hysteresis current control. The scheme is consisting of two single-phase switching voltage source to supply the three-phase induction machine drive. The technology is based on single-phase four-switch inverter hysteresis current controlled that can reduce the switching frequency and obtain lower harmonic performance to improved third-level phase variable voltage source with hysteresis of inverter. In this research, the output load torque and THD are used to adjust value of current waveform and hysteresis, respectively. The method could reduce the switching frequency and lose under the limit maximum THD value.ThePSimsofeware simulation and verified that the method is simple and effective.
APA, Harvard, Vancouver, ISO, and other styles
22

Hsiang-YiChu and 朱湘儀. "Dual Buck Inverter with Constant Frequency Variable Hysteresis Current Control." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/90045155481958795728.

Full text
Abstract:
碩士<br>國立成功大學<br>電機工程學系<br>102<br>The purpose of this thesis is to implement a dual buck inverter for tide power transfer system. Because the change of front-end tide power transfer system output AC voltage could be varying and low. By realized the first stage of boost converter to rectify and boost the voltage, then convert power to the second stage of dual buck inverter. The thesis presents a new control strategy of constant frequency with variable hysteresis width. It can design the filter and choose power components easily when using the new type control. Compare to conventional hysteresis current control, by constant frequency variable hysteresis current control, it reduces the total harmonic distortion and the ripple of output voltage. Furthermore, it raises the system of power conversion efficiency. Finally, the thesis proposed a prototype 500 watt dual buck inverter system is implemented. The maximum efficiency of the system is 97% and THD is less than 2%.
APA, Harvard, Vancouver, ISO, and other styles
23

Deng, Yongan. "A comparison between STATCOMs using PWM voltage control and hysteresis current control (HCC)." Thesis, 2007. http://spectrum.library.concordia.ca/975587/1/MR40879.pdf.

Full text
Abstract:
The Voltage Source Inverter (VSI) has now become the fundamental building block component in Flexible AC Transmission Systems (FACTS). Among the various applications of a VSI, the Static Synchronous Compensator (STATCOM) is the most popular one. It injects a set of three-phase balanced sinusoidal currents with controllable magnitude and phase angle, into the transmission line to regulate the transmission line voltage or to compensate for the reactive power. Under the condition that no external source/sink is available on the DC side, it should also absorb a small amount of active power from the transmission line to maintain the DC bus voltage constant and compensate for any real power losses within the VSI. In this process, the control method of the VSI is one of the key factors to influence the performance of the STATCOM. This thesis investigates the effect of two modulation schemes on the performance of a STATCOM. The first is the Pulse Width Modulation (PWM) voltage control and the second Hysteresis Current Control (HCC). The performance of the two schemes under steady-state and transient conditions are assessed by means of simulations using EMTPRV. The results presented in the thesis justify the fact that PWM voltage control has become the de-facto modulation technique for STATCOM applications despite well known limitation of generation of low voltage harmonics with large magnitudes when operating at low switching frequencies.
APA, Harvard, Vancouver, ISO, and other styles
24

Lee, Ming-Hsueh, and 李明學. "Design and Implementation of a Three-Phase Inverter with Hysteresis Current Control." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/51417642632607481801.

Full text
Abstract:
碩士<br>國立臺灣大學<br>電機工程學研究所<br>103<br>A three-phase four-wire inverter with hysteresis current control for the photovoltaic (PV) system application is proposed in this thesis. There are usually two series-connected dc-link capacitors in the input side of a three-phase four-wire inverter. Unstable operation may result if the two capacitor voltages are different. In this thesis, a control method is developed according to the relationship between the dc-link capacitor voltage and the neutral wire current. By detecting the dc-link capacitor voltage, the neutral wire reference current signal can be generated to adjust the offset of hysteresis current band, so the capacitor voltage shifting and unstable operation can be avoided. On the other hand, there are many switches in the three-phase four-wire inverter and their switching losses dominate the inverter’s efficiency. In this thesis, the zero voltage switching operation is achieved by producing the bi-directional inductor current so that the switching loss can be reduced. Finally, simulation and hardware implementation results verify the feasibility and performance of the proposed three-phase four-wire inverter with hysteresis current control.
APA, Harvard, Vancouver, ISO, and other styles
25

Charanteja, Rongali. "Comparative Analysis of Hysteresis Current Control and SVPWM on FLC based Indirect Vector Controlled Induction Motor Drive." Thesis, 2018. http://ethesis.nitrkl.ac.in/9647/1/2018_MT_216EE4299_RCharanteja_Comparative.pdf.

Full text
Abstract:
Over the years,Induction motors (IM) are widely used in many industrial applications as workhorse, because of its advantages such as simple and robust in construction, highly reliable and capability of working in extreme conditions. However, as compared to DC motor speed control of IM is complex due to coupling between flux and torque components of currents. Speed of IM controlled either by scalar control technique or by vector control technique. Scalar control technique is preferred in many applications for speed control of IM due to its simplicity. In scalar control, speed control of IM obtained by regulating magnitudes of stator voltage and frequency. However, this technique suffers with poor dynamic response. To enhance dynamic response, vector control technique preferred for speed control of IM. With vector control technique, IM behaves like a separately controlled DC motor. However, this technique employs coordination transformations, modulation techniques and current controllers. Vector control technique classified into two categories based on unit vector generation named as direct vector control and indirect vector control. In direct vector control technique, unit vector estimated using hall sensors. However, placing these sensors on stator poles is difficult. Indirect vector control overcomes these drawbacks. Proportional-Integral (PI) controller used in indirect vector controlled IM drive to control speed. However, this PI controller requires accurate gain values for better performance. As operating conditions changes, tuning of PI controller gains required for high performance IMD. Moreover, PI controller is unable perform satisfactorily with load torque and speed changes. Therefore, fuzzy logic controller (FLC) used to replace PI speed controller. FLC is simple to implement without any mathematical equations. Modulation techniques required to produce gating pulses for inverter switches. Modulation techniques broadly classified into two categories such as voltage and current control methods. Voltage control again subdivided as sinusoidal pulse width modulation (SVPWM), space vector pulse width modulation (SVPWM) techniques. Similarly, current control divided into hysteresis and delta control. Among all these techniques, SVPWM and Hysteresis control techniques are preferred in high power applications. Hysteresis control is simple and can give fast response but it suffered with variable operating switching frequency. SVPWM technique can give good steady state response with fixed switching frequency.
APA, Harvard, Vancouver, ISO, and other styles
26

Tseng, Tai-Wei, and 曾台偉. "Research for Maximum Power Point Tracking Method of Solar cell Based on Load Current Control Combined with Improved Hysteresis Comparison." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/45124738990293461154.

Full text
Abstract:
碩士<br>國立臺灣科技大學<br>電機工程系<br>101<br>Solar energy is an inexhaustible supply of green energy, but power output of the solar cell can not keep at the maximum power output due to various factors such as sunlight intensity, temperature and load changes, causing energy loss. It is necessary to track the maximum power output with the appropriate hardware circuit and software control techniques so that the solar cells can be responsible to external environment changes at any time, and adjusted to maintain maximum power outputthe state. The thesis presents a maximum power point tracking method of solar cell based on combining load current control and improved hysteresis comparison technique to track the maximum power output. Without detecting voltage and calculating the power, we monitor the output current of DC/DC converter only to simplify the control circuitry and reduce costs. The traditional hysteresis comparison method was revised by adjusting the disturbance direction automatically to improve the tracking performance, meanwhile the time control aogorithm reduced the oscillation loss during working at the maximum power point. The commercial software of Matlab/simulink were used to simulate performances of solar cells, DC/DC converter and the maximum power point tracking technique, to test and compare the power output differences among proposed method and various conventional methods for fixed and variable sunlight. Finally, the microcontroller PIC18F4520, built-in A/D converter and PWM signal generator, was used to construct hardware circuitry, 2W single crystalline silicon solar cell and a 60W tungsten lamp as the sunlight, to simulate power output for different illuminance and verify the effectiveness of the maximum power point tracking proposed.
APA, Harvard, Vancouver, ISO, and other styles
27

Ramchand, Rijil. "Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM Drives." Thesis, 2010. https://etd.iisc.ac.in/handle/2005/1330.

Full text
Abstract:
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors. Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor. Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis. This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector. Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
28

Ramchand, Rijil. "Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM Drives." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1330.

Full text
Abstract:
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors. Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor. Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis. This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector. Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
29

Ramubhai, Patel Chintanbhai. "Investigations On Sensorless Vector Control Using Current Error Space Phasor And Direct Torque Control Of Induction Motor Drive Based On Hexagonal And 12-Sided Polygonal Voltage Space Vectors." Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2180.

Full text
Abstract:
Variable-speed Induction motor drives are nowadays used for various kinds of industrial processes, transportation systems, wind turbines and household appliances in the world. The majority of drives are for general purpose speed control applications where accurate speed control is not required for entire speed range. But for high dynamic drive application, very precise and fast control of induction motor drive is essential. For such applications, sophisticated and well-performing control design is a key issue. Precise and accurate torque control of the Induction Motor (IM) can only be accomplished by vector control and direct torque control. In terms of space vector theory, vector control implies that the instantaneous torque is controlled by way of the stator current vector that is orthogonal to the rotor flux vector. Precise knowledge of the rotor flux angle is therefore essential for a vector controlled IM. IMs do not allow the flux position to be easily measured, so most modern vector controlled IM drives rely on flux estimation. This means that the flux angle is derived from a flux estimator, using the dynamic model of the IM. Given that the rotor speed of the IM is measured by a mechanical shaft sensor. Flux estimation is a fairly easy task. However, vector control of IM without mechanical shaft speed sensor is of current interest in industrial environment. The driving motivations behind the development in sensorless control are lower cost, improved reliability and operating environment. In this thesis, a sensorless vector control scheme for rotor flux estimation using current error space phasor based hysteresis controller is proposed including the method for estimation of leakage inductance, Ls. For frequencies of operation less than 25 Hz, the rotor voltage and hence the rotor flux position is computed during the inverter zero voltage space vector using steady state model of IM. For above 25 Hz, active vector period and steady state model of IM is used. The whole rotor flux estimation scheme is dependent on current error space phasor and the steady state motor model, with rotor flux as a reference vector. Since no terminal voltage sensing is involved, dead time effects will not create problem in rotor flux sensing at low frequencies of operation. But appropriate device on-state drop are compensated at low frequencies (below 5 Hz) of operation to achieve a steady state operation up to less than 1 Hz. A constant switching frequency hysteresis current controller is used in inner current control loop for the PWM regulation, with smooth transition of operation to six-step mode operation. A simple Ls estimation based on current error space phasor is also proposed to nullify the deteriorating effect on rotor flux estimation. The parameter sensitivity of the control scheme to changes in the stator resistance Rs is also investigated. The drive scheme is tested up to a low frequency operation less than 1 Hz. The extensive simulation and experiment results are presented to show the proposed scheme’s good dynamic performance extending up to six-step operation. In contrast to vector control, direct torque control (DTC) method requires the knowledge of stator resistance only and thereby decreasing the associated sensitivity to parameters variation and the elimination of speed information. DTC as compared to vector control does not require co-ordinate transformation and PI controller. DTC is easy to implement because it needs only two hysteresis comparators and a lookup table for both flux and torque control. This thesis also investigates the possibilities in improvement of direct torque control scheme for high performance induction motor drive applications. Here, two schemes are proposed based on the direct torque control scheme for IM drive using 12-sided polygonal voltage space vectors for fast torque control. The torque control scheme based on DTC algorithm is proposed using 12-sided polygonal voltage space vector. The basic DTC scheme is used to control the torque. But the IM drive is open-end type. For torque control, the voltage space vectors orthogonal to stator flux vector in 12-sided polygonal space vector structure are used as hexagonal space vector based DTC scheme. The advantages achieved due to 12-sided polygonal space vector are mainly fast torque control and small torque ripple. The fast transient of torque with precise control is achieved using voltage space vector placed with a resolution of ±15. The torque ripple will be less as 6n±1 (n=odd) harmonic torque is totally eliminated from the whole range of PWM modulation. The comparative analysis of proposed 12-sided polygonal voltage space vector based DTC and conventional hexagonal space vector based DTC is also presented. Extensive simulation and experiment results are also presented to show the fast torque control at speeds of operation ranging from 5 Hz to the rated speed. The concept of 12-sided polygonal space vector based DTC is further extended for a variable speed control scheme using estimated fundamental stator voltage for sector identification. The conventional DTC scheme uses stator flux vector for identification of the sector and the switching vector are selected based on this sector information to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady state model of IM and information of synchronous frequency which is derived from computed stator flux using a low pass filter technique. The proposed DTC scheme utilizes the exact position of fundamental stator voltage vector and stator flux vector position to select optimal switching vector for fast control of torque with small variation of stator flux within hysteresis band. The present DTC scheme allows the full load torque control with fast transient response to very low speeds of operation below 5 Hz. The extensive simulation and experiment results are presented to show the fast torque control for speed of operation from zero speed to rated speed. However, the present scheme will have all the advantages of DTC scheme using stator flux vector for sector identification. All the above propositions are first simulated by MATLAB/Simulink and subsequently verified by an experimental laboratory prototype. The proposed control schemes are experimentally verified on a 3.7 kW IM drive. The control algorithms of the sensorless vector control using current error space phasor as well as DTC using 12-sided polygonal voltage space vector are completely implemented on a TI TMS320LF2812 DSP controller platform. These are some of the constituents for chapters 2, 3 and 4 in this thesis. Additionally, the first chapter also covers a brief survey on some of the recent progresses made in the field of sensorless vector control, direct torque control and current hysteresis controller. The thesis concludes with suggestion for further exploration.
APA, Harvard, Vancouver, ISO, and other styles
30

Ramubhai, Patel Chintanbhai. "Investigations On Sensorless Vector Control Using Current Error Space Phasor And Direct Torque Control Of Induction Motor Drive Based On Hexagonal And 12-Sided Polygonal Voltage Space Vectors." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2180.

Full text
Abstract:
Variable-speed Induction motor drives are nowadays used for various kinds of industrial processes, transportation systems, wind turbines and household appliances in the world. The majority of drives are for general purpose speed control applications where accurate speed control is not required for entire speed range. But for high dynamic drive application, very precise and fast control of induction motor drive is essential. For such applications, sophisticated and well-performing control design is a key issue. Precise and accurate torque control of the Induction Motor (IM) can only be accomplished by vector control and direct torque control. In terms of space vector theory, vector control implies that the instantaneous torque is controlled by way of the stator current vector that is orthogonal to the rotor flux vector. Precise knowledge of the rotor flux angle is therefore essential for a vector controlled IM. IMs do not allow the flux position to be easily measured, so most modern vector controlled IM drives rely on flux estimation. This means that the flux angle is derived from a flux estimator, using the dynamic model of the IM. Given that the rotor speed of the IM is measured by a mechanical shaft sensor. Flux estimation is a fairly easy task. However, vector control of IM without mechanical shaft speed sensor is of current interest in industrial environment. The driving motivations behind the development in sensorless control are lower cost, improved reliability and operating environment. In this thesis, a sensorless vector control scheme for rotor flux estimation using current error space phasor based hysteresis controller is proposed including the method for estimation of leakage inductance, Ls. For frequencies of operation less than 25 Hz, the rotor voltage and hence the rotor flux position is computed during the inverter zero voltage space vector using steady state model of IM. For above 25 Hz, active vector period and steady state model of IM is used. The whole rotor flux estimation scheme is dependent on current error space phasor and the steady state motor model, with rotor flux as a reference vector. Since no terminal voltage sensing is involved, dead time effects will not create problem in rotor flux sensing at low frequencies of operation. But appropriate device on-state drop are compensated at low frequencies (below 5 Hz) of operation to achieve a steady state operation up to less than 1 Hz. A constant switching frequency hysteresis current controller is used in inner current control loop for the PWM regulation, with smooth transition of operation to six-step mode operation. A simple Ls estimation based on current error space phasor is also proposed to nullify the deteriorating effect on rotor flux estimation. The parameter sensitivity of the control scheme to changes in the stator resistance Rs is also investigated. The drive scheme is tested up to a low frequency operation less than 1 Hz. The extensive simulation and experiment results are presented to show the proposed scheme’s good dynamic performance extending up to six-step operation. In contrast to vector control, direct torque control (DTC) method requires the knowledge of stator resistance only and thereby decreasing the associated sensitivity to parameters variation and the elimination of speed information. DTC as compared to vector control does not require co-ordinate transformation and PI controller. DTC is easy to implement because it needs only two hysteresis comparators and a lookup table for both flux and torque control. This thesis also investigates the possibilities in improvement of direct torque control scheme for high performance induction motor drive applications. Here, two schemes are proposed based on the direct torque control scheme for IM drive using 12-sided polygonal voltage space vectors for fast torque control. The torque control scheme based on DTC algorithm is proposed using 12-sided polygonal voltage space vector. The basic DTC scheme is used to control the torque. But the IM drive is open-end type. For torque control, the voltage space vectors orthogonal to stator flux vector in 12-sided polygonal space vector structure are used as hexagonal space vector based DTC scheme. The advantages achieved due to 12-sided polygonal space vector are mainly fast torque control and small torque ripple. The fast transient of torque with precise control is achieved using voltage space vector placed with a resolution of ±15. The torque ripple will be less as 6n±1 (n=odd) harmonic torque is totally eliminated from the whole range of PWM modulation. The comparative analysis of proposed 12-sided polygonal voltage space vector based DTC and conventional hexagonal space vector based DTC is also presented. Extensive simulation and experiment results are also presented to show the fast torque control at speeds of operation ranging from 5 Hz to the rated speed. The concept of 12-sided polygonal space vector based DTC is further extended for a variable speed control scheme using estimated fundamental stator voltage for sector identification. The conventional DTC scheme uses stator flux vector for identification of the sector and the switching vector are selected based on this sector information to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady state model of IM and information of synchronous frequency which is derived from computed stator flux using a low pass filter technique. The proposed DTC scheme utilizes the exact position of fundamental stator voltage vector and stator flux vector position to select optimal switching vector for fast control of torque with small variation of stator flux within hysteresis band. The present DTC scheme allows the full load torque control with fast transient response to very low speeds of operation below 5 Hz. The extensive simulation and experiment results are presented to show the fast torque control for speed of operation from zero speed to rated speed. However, the present scheme will have all the advantages of DTC scheme using stator flux vector for sector identification. All the above propositions are first simulated by MATLAB/Simulink and subsequently verified by an experimental laboratory prototype. The proposed control schemes are experimentally verified on a 3.7 kW IM drive. The control algorithms of the sensorless vector control using current error space phasor as well as DTC using 12-sided polygonal voltage space vector are completely implemented on a TI TMS320LF2812 DSP controller platform. These are some of the constituents for chapters 2, 3 and 4 in this thesis. Additionally, the first chapter also covers a brief survey on some of the recent progresses made in the field of sensorless vector control, direct torque control and current hysteresis controller. The thesis concludes with suggestion for further exploration.
APA, Harvard, Vancouver, ISO, and other styles
31

Shih-MeiLin and 林詩梅. "Fast-Response Buck Converters with Current-Mode and Fixed-Frequency Hysteretic Control." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/56035144191444572790.

Full text
Abstract:
碩士<br>國立成功大學<br>電機工程學系<br>102<br>This thesis is about the fixed-frequency fast-transient regulator. Based on control methods, the thesis can be divided into two parts: The first part focuses on the fast transient current-mode controlled buck converter. Through the systematic design procedure and analysis including the system modeling, compensator design, transistor level design, and chip implementation, the loop response is improved for better dynamic response. The design procedure is verified by the chip’s measurement results. The measurement results show that this converter can operate with load current from 200mA to 500mA in a supply voltage from 2.7 to 4.2V and the output voltage of 1.8V. The recovery time is about 10us and the highest efficiency is 93%. By the frequency domain measurement, the stability of proposed buck converter can be guaranteed. This converter is designed and fabricated with TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 4.7μH and 10μF. In the second part of this thesis, a fast transient quasi-V2 fixed-frequency hysteretic buck converter with wide load current range is proposed. This converter uses the phase-locked loop through the proposed Two Stage Window Control Circuit to stabilize the switching frequency. Under ultra-light load condition, this converter operates in PFM mode to reduce the switching loss and improve the light load efficiency. By the quasi-V2 technique, the inductor current information can be obtained without relying on large ESR of output capacitor to reduce the output ripple. This converter has been designed and fabricated by TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 2.2μH and 10uF. The measurement results show that this converter can operate with load current from 18mA-700mA in a supply voltage from 3.3-3.9V, and the output voltage of 1.2V. With the PLL, the switching frequency is maintained constant at 1MHz. The transient response time is about 5us and the highest efficiency is 95.6%.
APA, Harvard, Vancouver, ISO, and other styles
32

Ting-HsuanHung and 洪挺軒. "A Hysteretic Capacitor Current Control DC-DC Buck Converter with Transient-Optimized Feedback Circuit." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/37136780197870494785.

Full text
Abstract:
碩士<br>國立成功大學<br>電機工程學系碩博士班<br>101<br>A hysteretic capacitor current control DC-DC buck converter with transient-optimized feedback circuit is presented to simultaneously achieve optimal line/load/DVS transient responses. The hysteretic control with an on-chip capacitor current sensor (CCS) is adopted for its inherent well line transient performance. According to time-domain analysis, a transient-optimized feedback circuit (TOFC) with non-linear feedback is proposed to optimize load/DVS transient responses. Moreover, the error amplifier improves the regulation performance and a transient-hold (TH) technique reduces the required capacitance of the error amplifier to save the controller area. An energy-recycled control (ERC) recycles the excess energy in the output capacitor to the input supply and thus load/DVS transient responses are not limited by small load current. The fabricated chip occupies 0.88 mm2 in a 0.35-μm CMOS process. Measurement result shows negligible output disturbance in response to 1-V line voltage step. For 500-mA step-up load current, output voltage is settled within 0.8 μs. For 0.6-V DVS, output voltage is settled within 3 μs. The line regulation performance is 2.5mV/V and the load regulation performance is 0.5mV/A. The maximum load current is 2A and peak efficiency of 96% is measured at 500 mW output power.
APA, Harvard, Vancouver, ISO, and other styles
33

"Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.46206.

Full text
Abstract:
abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ±1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ±1.1% voltage regulation accuracy. Maximum current-sharing error of ±3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V.<br>Dissertation/Thesis<br>Doctoral Dissertation Electrical Engineering 2017
APA, Harvard, Vancouver, ISO, and other styles
34

Hsu, Ming-Shen, and 許銘勝. "Adaptive Compensation Control for Hysteretic Current Mode DC-DC Boost Converters with Improved Transient Response Performance." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/95973551038565803098.

Full text
Abstract:
碩士<br>國立交通大學<br>電機學院碩士在職專班電機與控制組<br>98<br>This thesis proposes a modulated hysteretic current control technique to improve transient response of DC-DC boost converters, which suffer from low bandwidth due to the existence of right-half-plane (RHP) zero. The technique can automatically adjust the on-time value to rapidly increase the inductor current to shorten the transient response time. Besides, based on the characteristic of right-half-plane (RHP) zero, the compensation pole and zero are deliberately adjusted to achieve the system has an ultra-fast transient response in case of load transient condition and an adequate phase margin in steady state. Experimental results show the improvement in transient response is higher than 7.2 times when load current changes from light to heavy or vice versa compared to the conventional boost converter design. The power consumption overhead is merely 1%.
APA, Harvard, Vancouver, ISO, and other styles
35

Yang, Hong-Yuan, and 楊鴻源. "Adaptive Capacitor Compensation Control Technique of Hysteretic Current Mode under Continuous Conduction Mode for DC-DC Boost Converters." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/55708484291766282732.

Full text
Abstract:
碩士<br>國立交通大學<br>電機學院碩士在職專班電機與控制組<br>98<br>This paper proposes a modulated hysteretic current control (MHCC) technique to improve transient response of DC-DC boost converters, which suffer from low bandwidth due to the existence of right-half-plane (RHP) zero. The MHCC technique can automatically adjust the on-time value to rapidly increase the inductor current to shorten the transient response time. Besides, based on the characteristic of right-half-plane (RHP) zero, the compensation pole and zero are deliberately adjusted to achieve the system has an ultra-fast transient response in case of load transient condition and an adequate phase margin in steady state. Experimental results show the improvement in transient response is higher than 7.2 times when load current changes from light to heavy or vice versa compared to the conventional boost converter design. The power consumption overhead is merely 1%.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography