Academic literature on the topic 'I-V curve'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'I-V curve.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "I-V curve"
Nagayoshi, H. "I–V curve simulation by multi-module simulator using I–V magnifier circuit." Solar Energy Materials and Solar Cells 82, no. 1-2 (May 1, 2004): 159–67. http://dx.doi.org/10.1016/j.solmat.2004.01.014.
Full textNoda, Kazuhiko, and Tomo Saito. "II. Fundamental Electrochemical Methods for Corrosion-Polarization Curve(i-V Curve)-." Zairyo-to-Kankyo 67, no. 1 (January 15, 2018): 9–16. http://dx.doi.org/10.3323/jcorr.67.9.
Full textVélez-Sánchez, Jeisson, Juan Bastidas-Rodríguez, Carlos Ramos-Paja, Daniel González Montoya, and Luz Trejos-Grisales. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules." Energies 12, no. 2 (January 18, 2019): 303. http://dx.doi.org/10.3390/en12020303.
Full textCasado, P., J. M. Blanes, C. Torres, C. Orts, D. Marroquí, and A. Garrigós. "Raspberry Pi based photovoltaic I-V curve tracer." HardwareX 11 (April 2022): e00262. http://dx.doi.org/10.1016/j.ohx.2022.e00262.
Full textAranda, Eladio, Juan Gomez Galan, Mariano de Cardona, and Jose Andujar Marquez. "Measuring the I-V curve of PV generators." IEEE Industrial Electronics Magazine 3, no. 3 (September 2009): 4–14. http://dx.doi.org/10.1109/mie.2009.933882.
Full textCasado, Pablo, José M. Blanes, Francisco Javier Aguilar Valero, Cristian Torres, Manuel Lucas Miralles, and Javier Ruiz Ramírez. "Photovoltaic Evaporative Chimney I–V Measurement System." Energies 14, no. 24 (December 7, 2021): 8198. http://dx.doi.org/10.3390/en14248198.
Full textLi, Jian-Quan, Xin-Yao Xie, Qing-He Zhang, Shu-Han Li, and Wen-Qi Lu. "Data processing of Langmuir probe I–V traces to obtain accurate electron temperature and density in Maxwellian plasmas." Physics of Fluids 34, no. 6 (June 2022): 067115. http://dx.doi.org/10.1063/5.0097089.
Full textGonzález, Isaías, José María Portalo, and Antonio José Calderón. "Configurable IoT Open-Source Hardware and Software I-V Curve Tracer for Photovoltaic Generators." Sensors 21, no. 22 (November 18, 2021): 7650. http://dx.doi.org/10.3390/s21227650.
Full textZegrar, Mansour, M’hamed Houari Zerhouni, Mohamed Tarik Benmessaoud, and Fatima Zohra Zerhouni. "Design and implementation of an I-V curvetracer dedicated to characterize PV panels." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (June 1, 2021): 2011. http://dx.doi.org/10.11591/ijece.v11i3.pp2011-2018.
Full textRekutov, O. G., V. M. Rulevskiy, A. G. Yudintsev, and А. М. Malyshenko. "Comparative analysis of I-V curve solar array simulator." Proceedings of Tomsk State University of Control Systems and Radioelectronics 22, no. 4 (2019): 89–95. http://dx.doi.org/10.21293/1818-0442-2019-22-4-89-95.
Full textDissertations / Theses on the topic "I-V curve"
Luna, MÃrcio Leal Macedo. "Development and validation of I x V curve tracer for photovoltaic modules." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17151.
Full textThe IxV curves tracers for PV modules are used as a method of diagnosis of problems such as shadowing, faulty connections and degradation conditions. There are several types and brands tracers commercially available, but their costs are quite high in the Brazilian market due to the need to import. This thesis describes the development and validation of a IxV curve tracer for PV modules based on the electronic load method using MOSFET as load to the module. By appropriate variation of the MOSFET gate-source voltage signal was possible to acquire the points of voltage and current of the PV modules terminals. These points were recorded using a data acquisition board with PIC18F2550, which is controlled by a computer via a USB with a graphical interface to the user. This interface was developed in MATLAB software ensuring greater flexibility and functionality to the device. For PV module temperature measurements PT100 sensors were used and measurements of solar irradiance was used a pyranometer LP02 model Hukseflux Thermal Sensor manufacturer, these sensors were connected to a supervisory system consists of a PC and a programmable logic controller (PLC). The validation process was conducted by comparing the electrical parameters provided by the developed tracer and the commercial tracer MINI-KLA. From this comparison an error was generated for each parameter. Three PV modules of different electrical characteristics (20 Wp, 87 Wp e 160 Wp) were used and there was similarity between the curves of the developed tracer with the curves of the commercial tracer. The average of errors of the electrical parameters for the 3 PV modules was less than 5% at no shading conditions. In two conditions of shading, the IxV curves provided by the two tracers for the KC 85 T PV module were compared and it was observed in the first situation that the MINI-KLA tracer could characterize only partially the curve while the tracer developed could characterize the curve fully, in the second situation there was great similarity between the curves of the two tracers with maximum percentage difference in the electrical parameters equal to 5.41%.
Os traÃadores de curva IxV para mÃdulos FV sÃo utilizados como um mÃtodo de diagnÃstico de problemas como sombreamento, conexÃes defeituosas e condiÃÃes de degradaÃÃo. Existem diversos tipos e marcas de traÃadores disponibilizados comercialmente, mas seus custos sÃo bastante elevados no mercado brasileiro devido à necessidade de importaÃÃo. A presente dissertaÃÃo aborda o desenvolvimento e a validaÃÃo de um traÃador de curva IxV para mÃdulos FV baseado no mÃtodo de carga eletrÃnica com uso de MOSFET como carga para o mÃdulo. AtravÃs da adequada variaÃÃo do sinal de tensÃo de gate-source do MOSFET foi possÃvel adquirir os pontos de tensÃo e corrente nos terminais dos mÃdulos FV. Estes pontos foram registrados atravÃs de uma placa de aquisiÃÃo de dados, com PIC18F2550, que à controlada via USB por um computador com uma interface grÃfica para usuÃrio. Esta interface foi desenvolvida com o software MATLAB, garantindo maior flexibilidade e funcionalidade ao dispositivo. Para mediÃÃes da temperatura do mÃdulo FV foram utilizados sensores PT100 e para as mediÃÃes de irradiÃncia solar foi utilizado um piranÃmetro modelo LP02 do fabricante Hukseflux Thermal Sensor; estes sensores foram utilizados atravÃs de um sistema supervisÃrio composto por um PC e um controlador lÃgico programÃvel (CLP). O processo de validaÃÃo foi realizado atravÃs da comparaÃÃo dos parÃmetros elÃtricos fornecidos pelo traÃador desenvolvido e pelo traÃador comercial MINI-KLA. A partir desta comparaÃÃo um erro foi gerado para cada parÃmetro. Foram utilizados 3 mÃdulos FV de diferentes caracterÃsticas elÃtricas (20 Wp, 87 Wp e 160 Wp) e observou-se proximidade entre as curvas do traÃador desenvolvido com as curvas do traÃador comercial. A mÃdia dos erros para os 3 mÃdulos relativa aos parÃmetros elÃtricos obtidos com os 2 traÃadores foi inferior a 5% em condiÃÃes sem sombreamento. Em duas condiÃÃes de sombreamento, as curvas IxV fornecidas pelos dois traÃadores relativas ao mÃdulo FV KC 85 T foram comparadas e observou-se na primeira situaÃÃo que o traÃador MINI-KLA conseguiu caracterizar apenas parcialmente a curva enquanto que o traÃador desenvolvido conseguiu caracterizar a curva totalmente, na segunda situaÃÃo observou-se grande proximidade entre as curvas dos dois traÃadores com diferenÃa percentual mÃxima nos parÃmetros elÃtricos igual a 5,41%.
Kovářová, Veronika. "Variantní řešení silnice I/57 v úseku Semetín-Bystřička." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226452.
Full textRodrigues, Pedro Manuel Fernandes. "Sistema de geração e aquisição das características I-V de módulos fotovoltaicos." Master's thesis, Instituto Politécnico de Bragança, Escola Superior de Tecnologia e de Gestão, 2009. http://hdl.handle.net/10198/2027.
Full textDevoto, Acevedo María Ignacia. "Solar module characterization via visual inspection in the field, I-V curve and thermal-image analysis." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/159569.
Full textEl desierto de Atacama anida abundantes recursos naturales en sus 105.000 km2. Éste contiene las reservas más grandes de cobre y productos no metálicos del mundo, y los niveles mundiales de irradiancia más altos con un promedio anual de 2.500 kWh/m2 de Irradiancia Horizontal Global (GHI), 3.500 kWh/m2 de Irradiancia Directa Normal (DNI) y de 4.000 horas de sol. A pesar de tener muchas ventajas, también presenta desafíos importantes. A modo de ejemplo, se sabe que las dosis anuales de UV-B en el desierto de Atacama son cerca de un 40% más altas que las típicas del norte de África. Esta parte del espectro no genera más electricidad y podría perjudicar los materiales utilizados en los módulos fotovoltaicos (FV), reduciendo su vida útil. Por ende, un módulo vidrio/vidrio (bifacial) especialmente diseñado para nuestro desierto es parte de la I+D+i FV en el programa solar nacional. Para materiales y diseños de módulos FV ya existentes, datos acerca de observaciones sobre su degradación son variables en su nivel de detalle, consistencia, calidad y significancia estadística. Además, la información disponible acerca de fallas típicas de módulos FV instalados en el desierto de Atacama es escasa o inexistente. A partir del contexto señalado, el objetivo principal de esta tesis es diseñar e implementar una herramienta de inspección para recolectar datos (IDCTool, por sus siglas en inglés), con el fin de evaluar módulos FV que operan en condiciones climáticas desérticas y caracterizarlos. La propuesta se basa en el estado-del-arte de prácticas en terreno junto con la definición de un conglomerado de criterios para su uso en soluciones FV de baja escala. Su implementación incluye el desarrollo de una encuesta, equipos y herramientas; y procedimientos para pruebas en terreno y análisis. IDCTool fue usada para una campaña en la región de Arica y Parinacota, la que es representativa de climas desérticos. Los resultados obtenidos fueron analizados de acuerdo con el procedimiento propuesto. La propuesta metodológica de esta tesis se validó mediante la campaña de Arica. Los 15 sitios visitados (comuna de Arica) fueron clasificados en 4 zonas: la costa, el centro de la ciudad, el valle y el desierto. Durante la campaña se inspeccionó 95 módulos FV, de los cuales se encontraron 9 fabricantes distintos. Los módulos operando por más tiempo llevaban 13 años instalados, los más nuevos llevaban 2 años. Todos los módulos inspeccionados estaban compuestos por un vidrio frontal, una lámina polimérica trasera y marco de aluminio. Según los resultados, no se presentaron fallas en cables, conectores ni celdas solares. La falla más típica fue el efecto soiling con 52 casos de soiling ligero y 39 de soiling fuerte. Otras fallas típicas fueron corrosión menor de la puesta a tierra (18 casos) y corrosión del marco (12 casos). En relación a los parámetros eléctricos, la mayor degradación se observó en la potencia nominal con una caída máxima de 39,08% y una caída promedio de 13,19±6,22%. En relación a la diferencia de temperatura de operación de los módulos FV con respecto a la temperatura ambiente, la mayor diferencia fue 24,45°C con un promedio de 11,67°C. Se encontró que la celda más caliente de todo el universo inspeccionado operaba a 99,4°C, mientras que en promedio las celdas más calientes operaban a 64,0°C. Con respecto a las anormalidades térmicas, se encontraron 2 módulos FV con patrón PID y 12 módulos mostraron celdas homogéneamente muy calientes. El trabajo realizado indica que la herramienta desarrollada, incluyendo la metodología para el análisis, entrega datos en formato estándar capaces de caracterizar módulos FV. Los datos analizados fueron estudiados mediante sus tendencias con el uso de herramientas estadísticas. Por ende, fue posible realizar conclusiones y recomendaciones. A pesar de esto, y debido a la falta de módulos inspeccionados, los fenómenos encontrados durante la campaña no pueden ser generalizados. En efecto, nuestro análisis no está validado por evidencia estadística sólida. En este contexto, el desarrollo de una base de datos significativa, mediante el uso de la IDCTool, será el mejor conjunto de datos como punto de partida para comenzar a hacer recomendaciones concluyentes para desarrollos en el ámbito FV.
Oliveira, Fernando Schuck de. "Desenvolvimento de traçador de curvas I-V portátil para arranjos fotovoltaicos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/127782.
Full textThis work presents the development of an IV tracer for in field measurement of PV arrays. This system uses a capacitive load as a method for polarizing the photovoltaic generator, with the switching being performed by insulated gate bipolar transistors (IGBT). To control switching of the IGBTs and acquisition of the IV curve, an Arduino board was applied, and was proved to be adequate for this purpose. The Arduino board control program was written in a variation of C++ language. Auxiliary circuits for amplifying the signal were built to measure electric current and irradiance, being in such cases used as sensors a shunt resistor and a calibrated reference solar cell, respectively. For obtaining the temperature, the LM35 temperature sensor was employed, presenting satisfactory results. The data acquired by the Arduino board are saved on a memory stick for later analysis. The uncertainty analysis was performed by using statistical methods, in which the systematic and random errors for each measurement channel were determined. The assembled prototype was applied for measuring the IV curve of a photovoltaic generator composed of a string of 3 modules located on the roof of one of the buildings from Solar Energy Laboratory of the Federal University of Rio Grande do Sul (LABSOL) and its result was compared with the IV tracer used on the laboratory. The result was, generally, satisfactory when compared with the two-wire measurement by the laboratory’s system, but showed a larger error when compared with the four-wire measurement. This prototype was also submitted to a test to evaluate its capacity of adequately presenting the IV curve when defects are induced on the string. The result presented by the prototype was quite similar to that obtained from LABSOL’s system. In general, it is possible to affirm that the prototype, based on its results, proved to be adequate for in field measurement of photovoltaic arrays.
LUCIANI, SILVIA. "Strumenti e metodi innovativi per la gestione degli interventi di manutenzione effettuati su impianti fotovoltaici al fine del mantenimento della loro efficienza e funzionalità." Doctoral thesis, Università Politecnica delle Marche, 2021. http://hdl.handle.net/11566/291089.
Full textDuring their lifetime, photovoltaic plants are subject to a normal degradation of their components, and they are consequently characterized by decrease of the expected production. Techniques such as production data analysis and instrumental tests are performed in order to monitor performance over time and to identify power decrease. Examining the state of the art, a lack of procedures related to the abovementioned techniques, both in the execution mode and in the results representation, has emerged. The main aim of this work is to define an organic process to investigate the performance of photovoltaic plants and to elaborate intervention proposals in order to increase their production. Based on the analyses that have been performed on the data from real photovoltaic plants and instrumental tests, this work defines the procedures to analyze the data extracted from the monitoring systems and proposes the procedures to identify and perform the tests to be carried out and the subsequent interpretation and representation of the results. In addition, the present work has pursued two other objectives parallel to the main one described above. Using the I-V curves determined by means of an indoor solar flash test device, it has been possible to evaluate production loss associated to specific thermal defects that can be detected through infrared thermography on the photovoltaic modules. A specific focus was also dedicated to the accuracy of I-V curves through the comparison between the measurements that are performed in the field and those obtained in the laboratory by means of an indoor solar flash test device. This study has led to a relevant conclusion: the I-V curves, that are carried out in the field, are characterized by an inadequate reliability and they cannot be considered a valid technique to evaluate the underperformance of a photovoltaic plant.
Baniahmad, Ata. "QUANTUM MECHANICAL Study and Modelling of MOLECULAR ELECTRONIC DEVICES." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13193/.
Full textZhou, Ruiping. "Structural And Electronic Properties of Two-Dimensional Silicene, Graphene, and Related Structures." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341867892.
Full textFadhel, Siwar. "Efficacité énergétique et surveillance d’un microgrid à courant continu alimenté par des panneaux photovoltaïques." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS001.
Full textPhotovoltaic (PV) systems are frequently subjected to several faults leading to costly production losses. The proposed work focuses on the improvement of the energy efficiency of a DC micro-grid by minimizing the losses related to the occurrence of PV faults. First, we presented a state of the art on the most recurrent faults and their diagnosis methods. The literature review has led us to adopt a data-driven diagnosis approach. Then, the Principal Component Analysis (PCA) method was proposed for PV shading fault detection and classification for a PV module of 250 Wp. The PCA was first performed using the entire I(V) curve obtained under real climatic conditions. A minimum classification success rate of 87.38% is obtained in the training step and 97% is obtained in the validation step. PCA was then applied using only the MPP coordinates to detect the shading fault. The data is discriminated with a classification rate of 100%.Linear Discriminant Analysis (LDA) was opted to predict the new MPP outdoor measurements’classes. Finally, a faults effects analysis study was carried out for three typical faults on the scale of a PV array of 250 kWp. The study was based on the simulated I(V) curves, considering differents severities of each fault. The sensitivity of the I(V) curve of the whole PV plant was observed for both the contact degradation between PV strings and the partiel shading starting from a severity of 10%. The short-ciruit fault of the PV modules has considerably more effect on the strings’ I(V) curves
DORST, MATTHIJS. "Electrophysiological characterization of striatalneurons through dynamic I-V curves." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142426.
Full textDynamiska I-V-kurvor utgör en fysiologiskt relevant ansats för att elektrofysiologiskt karakterisera neuroner. Istället för att analysera en cells svar på enkla ströminjektioner och vänta på att cellmembranet stabiliseras så genereras en dynamisk I-V-kurva genom att injicera en mer naturtrogen dynamisk input och sedan analysera membransvaret över en längre tidsperiod. Trots att denna typ av data i grunden är brusig kan man genom medelvärdesbildning producera noggrann och detaljerad information om ström- spänningsrelationen för cellmembranet. En jämförelse har gjorts mellan ett antal olika striatala neuronertyper för embranegenskaper bestämda genom konventionella metoder och motsvarande parametrar extraherade från den dynamiska I-V-kurvan. Parameteröverenstämmelsen är inte alltid god, men för parametrar som membranresistans och membrankapacitans så är korrelationen ändå stark nog att bli statisktiskt signifikant. Vidare, den dynamiska I-V-kurvan ger också möjlighet att estimera membranresistansen över ett brett spänningsintervall, till skillnad mot traditionella metoder. Detta medger en bättre insikt i hur spänningsstyrda jonkanaler öppnar eller stänger. När de extraherade parametrarna tillämpas på en integrerande tröskelfyrningsmodell av refraktär exponentiell typ så kan modellen mycket noggrannt beskriva neuronens respons och detta med minimal beräkningskomplexitet.
Books on the topic "I-V curve"
A, Bolotov A. Algebraic and algorithmic foundations An elementary introduction to Elliptic curve cryptography / Algebraicheskie i algoritmicheskie osnovy Elementarnoe vvedenie v ellipticheskuyu kriptografiyu. KomKniga, 2006.
Find full textHrushovski, Ehud, and François Loeser. The main theorem. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.003.0011.
Full textStoneman, Paul, Eleonora Bartoloni, and Maurizio Baussola. Empirical Evidence on the Determination of the Extent of Product Innovation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816676.003.0008.
Full textBrown, Belly. L. E. V. I. T. R. a : Pharmacotherapy: E. d Cure,guide to Completely Cure Erectile Dysfunction. Independently Published, 2019.
Find full textPalmer, Doctor Juan. Z. O. V. I. R. A. x: The Ultimate Cure of Viral Infections Including Cold Sores Around the Mouth, Shingles, Genital Herpes and Chicken Pox. Independently Published, 2019.
Find full textBeckett, William. Collection of Chirurgical Tracts: I. Of Wounds of the Head and Brain; II. New Discoveries Relating to the Cure of Cancers; III. Chirurgical Remarks on ... Venereal Disease; V. A New Method of Curing. Forgotten Books, 2018.
Find full textAvances de investigación y vinculación UF 2021. ACVENISPROH EDICONES, 2021. http://dx.doi.org/10.47606/lib004.
Full textBook chapters on the topic "I-V curve"
Smeets, J., M. Van Roy, and P. Nagels. "I-V Curve Fitting for a-Si:H Solar Cells." In Seventh E.C. Photovoltaic Solar Energy Conference, 539–43. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_95.
Full textSarikh, Salima, Mustapha Raoufi, Amin Bennouna, Ahmed Benlarabi, and Badr Ikken. "Photovoltaic Discoloration and Cracks: Experimental Impact on the I-V Curve Degradation." In Lecture Notes in Electrical Engineering, 609–16. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_69.
Full textHasan, Abdulwahab A. Q., Ammar Ahmed Alkahtani, and Nowshad Amin. "Modeling and Performance Evaluation of Solar Cells Using I-V Curve Analysis." In Lecture Notes in Networks and Systems, 643–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25274-7_56.
Full textMalik, Praveen Kumar, Rajesh Singh, and Anita Gehlot. "Online Monitoring of Solar Panel Using I–V Curve and Internet of Things." In Lecture Notes in Networks and Systems, 225–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3369-3_17.
Full textSiu, Christopher. "Interpreting I-V Curves." In Electronic Devices, Circuits, and Applications, 1–9. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80538-8_1.
Full textFaria, Mateus H. R., Rafael V. T. da Nobrega, and Ulysses R. Duarte. "10-Steps Method to Extract the I-V Curve of Resonant Tunneling Diode Based on Experimental Data Preserving Physical Parameters." In Proceedings of the 4th Brazilian Technology Symposium (BTSym'18), 303–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16053-1_29.
Full textMatsukura, F. "Ga1–xMnxSb: Curie temperature, magnetic anisotropy." In New Data and Updates for III-V, II-VI and I-VII Compounds, 379. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_280.
Full textMatsukura, F. "Ga1–xCrxAs: Curie temperature, magnetic circular dichroism." In New Data and Updates for III-V, II-VI and I-VII Compounds, 125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_98.
Full textMatsukura, F. "Ga1–xMnxAs: exchange integrals, Curie temperature, magnetic anisotropy." In New Data and Updates for III-V, II-VI and I-VII Compounds, 192. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_143.
Full textHönerlage, B. "CuBr: phonon dispersion curves, phonon density of states." In New Data and Updates for III-V, II-VI and I-VII Compounds, 255–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_191.
Full textConference papers on the topic "I-V curve"
Antonov, Andrei Yu, and Marina I. Varayun'. "I–V curve investigation with regression methods." In 2016 14th International Baltic Conference on Atomic Layer Deposition (BALD). IEEE, 2016. http://dx.doi.org/10.1109/bald.2016.7886533.
Full textGupta, Abhishek Kumar, Narendra Singh Chauhan, and Ravi Saxena. "Real time I-V and P-V curve tracer using LabVIEW." In 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). IEEE, 2016. http://dx.doi.org/10.1109/iciccs.2016.7542320.
Full textSapaklom, T., K. Janhom, C. Sipirah, P. Kjitdamkean, P. Navaratana Na Ayudhya, E. Mujjalinvimut, and J. Kunthong. "IoT Based I-V and P-V Curve Analyzer system for small PV panels PART I." In 2022 25th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2022. http://dx.doi.org/10.1109/icems56177.2022.9983441.
Full textWang, Zhiming, Zhengbang Gong, Yuhong Bu, and Guangpu Wei. "Correlating the I-V curve of solar cell with IRAGA." In Instruments (ICEMI). IEEE, 2009. http://dx.doi.org/10.1109/icemi.2009.5274522.
Full textZhu, Yechen. "An Adaptive I-V Curve Detecting Method for Photovoltaic Modules." In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). IEEE, 2018. http://dx.doi.org/10.1109/peac.2018.8590262.
Full textErkaya, Yunus, Isaac Flory, and Sylvain X. Marsillac. "Development of a string level I–V curve tracer." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925594.
Full textTsukuda, Masanori, Li Guan, Kazuha Watanabe, Haruyuki Yamaguchi, Kenshi Takao, and Ichiro Omura. "V-I Curve Based Condition Monitoring System for Power Devices." In 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2020. http://dx.doi.org/10.1109/ispsd46842.2020.9170059.
Full textSkoczek, Artur, Tony Sample, and Ewan D. Dunlop. "Fill factor dependence of bilinear I–V curve translation accuracy." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922591.
Full textWilker, Charles, Philip S. W. Pang, Charles F. Carter, and Zhi-Yuan Shen. "S-Parameter, I-V Curve and Noise Figure Measurements of III-V Devices at Cryogenic Temperatures." In 39th ARFTG Conference Digest. IEEE, 1992. http://dx.doi.org/10.1109/arftg.1992.326974.
Full textZbib, Batoul, and Hiba Al Sheikh. "Fault Detection and Diagnosis of Photovoltaic Systems through I-V Curve Analysis." In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2020. http://dx.doi.org/10.1109/icecce49384.2020.9179390.
Full textReports on the topic "I-V curve"
L Danielson and D Depoy. Accurate Method for Forward and Reverse Bias Curve Fitting of TPV I-V Data. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/882557.
Full textWarrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach, and Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Full text