Academic literature on the topic 'Ice accretion modeling on wind turbines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ice accretion modeling on wind turbines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ice accretion modeling on wind turbines"
Martini, Fahed, Leidy Tatiana Contreras Montoya, and Adrian Ilinca. "Review of Wind Turbine Icing Modelling Approaches." Energies 14, no. 16 (August 23, 2021): 5207. http://dx.doi.org/10.3390/en14165207.
Full textMakkonen, Lasse, Timo Laakso, Mauri Marjaniemi, and Karen J. Finstad. "Modelling and Prevention of Ice Accretion on Wind Turbines." Wind Engineering 25, no. 1 (January 2001): 3–21. http://dx.doi.org/10.1260/0309524011495791.
Full textPedersen, Marie Cecilie, and Chungen Yin. "Preliminary Modelling Study of Ice Accretion on Wind Turbines." Energy Procedia 61 (2014): 258–61. http://dx.doi.org/10.1016/j.egypro.2014.11.1102.
Full textFu, Ping, and Masoud Farzaneh. "A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine." Journal of Wind Engineering and Industrial Aerodynamics 98, no. 4-5 (April 2010): 181–88. http://dx.doi.org/10.1016/j.jweia.2009.10.014.
Full textYirtici, Ozcan, Ismail H. Tuncer, and Serkan Ozgen. "Ice Accretion Prediction on Wind Turbines and Consequent Power Losses." Journal of Physics: Conference Series 753 (September 2016): 022022. http://dx.doi.org/10.1088/1742-6596/753/2/022022.
Full textJanzon, Erik, Heiner Körnich, Johan Arnqvist, and Anna Rutgersson. "Single Column Model Simulations of Icing Conditions in Northern Sweden: Sensitivity to Surface Model Land Use Representation." Energies 13, no. 16 (August 17, 2020): 4258. http://dx.doi.org/10.3390/en13164258.
Full textAfzal, Faizan, and Muhammad S. Virk. "Review of Icing Effects on Wind Turbine in Cold Regions." E3S Web of Conferences 72 (2018): 01007. http://dx.doi.org/10.1051/e3sconf/20187201007.
Full textIbrahim, G. M., K. Pope, and Y. S. Muzychka. "Effects of blade design on ice accretion for horizontal axis wind turbines." Journal of Wind Engineering and Industrial Aerodynamics 173 (February 2018): 39–52. http://dx.doi.org/10.1016/j.jweia.2017.11.024.
Full textSaleh, S. A., R. Ahshan, and C. R. Moloney. "Wavelet-Based Signal Processing Method for Detecting Ice Accretion on Wind Turbines." IEEE Transactions on Sustainable Energy 3, no. 3 (July 2012): 585–97. http://dx.doi.org/10.1109/tste.2012.2194725.
Full textStrauss, Lukas, Stefano Serafin, and Manfred Dorninger. "Skill and Potential Economic Value of Forecasts of Ice Accretion on Wind Turbines." Journal of Applied Meteorology and Climatology 59, no. 11 (November 2020): 1845–64. http://dx.doi.org/10.1175/jamc-d-20-0025.1.
Full textDissertations / Theses on the topic "Ice accretion modeling on wind turbines"
Ali, Muhammad Anttho. "In-cloud ice accretion modeling on wind turbine blades using an extended Messinger model." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53870.
Full textRindeskär, Erik. "Modelling of icing for wind farms in cold climate : A comparison between measured and modelled data for reproducing and predicting ice accretion." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-133381.
Full textArbinge, Peter. "The effect on noise emission from wind turbines due to ice accretion on rotor blades." Thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118267.
Full textFelding, Oscar. "Determining and analysing production losses due to ice on wind turbines using SCADA data." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83287.
Full textVindkraftverk blir en allt vanligare syn och en viktigare del i kraftnätet. Fördelarna är framförallt att det är en förnybar energykälla, det blir inga koldioxidutsläpp när vindkraftverken har installerats och ett vindkraftverk kan täcka flera hushålls årliga elbehov. Nackdelar är att vinden inte går att kontrollera och elproduktionen inte är garanterad eller konstant. Vindkraftverk placeras långt ifrån tätorter, vilket leder till förluster under distribution. I kalla regioner med långa vintrar uppstår en risk för energiförluster på grund av nedisade turbinblad. Om det finns ispåbyggnad på turbinbladen kan det orsaka produktionsförluster och följaktligen en ekonomisk förlust. Det är av stort intresse i att upptäcka dessa och det finns flera metoder för att förbygga is och även avisning. Det antas vara produktionsförluster på 5-25 % årligen på grund av is i Sverige, beroende på vindparkens placering. Det finns ingen generell metod för att upptäcka is inom industrin, men det finns flera metoder utvecklade av olika parter. I det här examensarbetet har en mjukvara utvecklats i samarbete med Siemens Gamesa Renewable Energy för att upptäcka produktionsförluster hos vindkraftverk orsakade av nedisade turbinblad genom att använda SCADA-data. Mjukvaran filtrerar rådata för att beräkna en referenskurva, mot vilken data för kallt väder kan jämföras. Den visar att det finns korrelation mellan låg temperatur och produktionsförluster samt att risken för produktionsförlust ökar då temperaturen sjunker. De årliga produktionsförlusterna hos de undersökta vindparkerna var 4-10 % av den förväntade årliga produktionen.
Books on the topic "Ice accretion modeling on wind turbines"
Spectral analysis and experimental modeling of ice accretion roughness. Washington, D.C: American Institute of Aeronautics and Astronautics, 1996.
Find full textBook chapters on the topic "Ice accretion modeling on wind turbines"
Pallarol, J. G., B. Sunden, and Zan Wu. "On Ice Accretion for Wind Turbines and Influence of Some Parameters." In Aerodynamics of Wind Turbines, 129–59. WIT Press, 2014. http://dx.doi.org/10.2495/978-1-78466-004-8/006.
Full textConference papers on the topic "Ice accretion modeling on wind turbines"
Jha, Pankaj, Dwight Brillembourg, and Sven Schmitz. "Wind Turbines Under Atmospheric Icing Conditions - Ice Accretion Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1287.
Full textSankar, Lakshmi N., and Muhammad Ali. "In-Cloud Ice Accretion Modeling on Wind Turbine Blades Using an Extended Messinger Model." In 13th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3715.
Full textMartini, Fahed, Drishty Ramdenee, Hussein Ibrahim, and Adrian Ilinca. "A lagrangean interactive interface to evaluate ice accretion modeling on a cylinder - a test case for icing modeling on wind turbine airfoils." In Energy Conference (EPEC). IEEE, 2011. http://dx.doi.org/10.1109/epec.2011.6070244.
Full textElhajare, Mustafa, Kevin Pope, and Xili Duan. "Experimental Investigation of Ice Accretion on Horizontal Axis Wind Turbines." In 2018 Canadian Society for Mechanical Engineering (CSME) International Congress. York University Libraries, 2018. http://dx.doi.org/10.25071/10315/35353.
Full textSokolov, Pavlo, Jia Yi Jin, and Muhammad S. Virk. "On the empirical k-factor in ice accretion on wind turbines: A numerical study." In 2017 2nd International Conference on Power and Renewable Energy (ICPRE). IEEE, 2017. http://dx.doi.org/10.1109/icpre.2017.8390570.
Full textVenkataramani, K., Chellappa Balan, Ron Plybon, Rick Donaldson, and Richard Caney. "Wind Tunnel Tests and Modeling Studies of Aircraft Engine Ice Accretion." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-906.
Full textSaleh, S. A., and C. R. Moloney. "Development and testing of wavelet packet transform-based detector for ice accretion on wind turbines." In 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE). IEEE, 2011. http://dx.doi.org/10.1109/dsp-spe.2011.5739189.
Full textDehghani-sanij, Alireza, Yuri S. Muzychka, and Greg F. Naterer. "Analysis of Ice Accretion on Vertical Surfaces of Marine Vessels and Structures in Arctic Conditions." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41306.
Full textYu, Bingbin, Dale G. Karr, and Senu Sirnivas. "Ice Nonsimultaneous Failure, Bending and Floe Impact Modeling for Simulating Wind Turbine Dynamics Using FAST." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24320.
Full textDonadei, Valentina, Heli Koivuluoto, Essi Sarlin, and Petri Vuoristo. "Durability of Lubricated Icephobic Coatings under Multiple Icing/Deicing Cycles." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0473.
Full text