Dissertations / Theses on the topic 'IDA-ICE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'IDA-ICE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Jakobsson, Anton. "Energibesparing i industrilokal : En IDA ICE studie." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-128108.
Full textReducing the energy consumption in older buildings is growing to be more important by each passing day as the cost of energy rises and political strides are made to limit the amount of energy used for various purposes. To optimize the use of energy in a building can be described as getting the same end result with a lower amount of spent energy, for the user this is an economic victory as he doesn’t have to spend as much money on heating his building while society gains a reduced impact on the environment and climate. In this thesis that you hold in your hands I have investigated an industrial building located in Teg, Umeå where I utilized the simulation software IDA ICE to simulate the buildings energy usage and the effects of various energy optimization/saving measures if implemented. The measures simulated are: Additional insulation for walls and roof, the switch to a ventilation system with a heat recovery unit, switching to well insulated windows, and switching the doors and garage doors to well insulated units. The work has mostly been done through studies of literature and IDA ICE where a model of the building has been constructed according to the specifications of the real world counterpart. The results from the various simulations are then compared with each other and the reference case. The results showed that all energy saving measures would result in a lowered use of energy. The biggest saving was gained from the changing out the ventilation system which resulted in a 49,3 % reduction whilst changing windows only resulted in a 0,7 % reduction.
Anders, Olsson. "Energiprestanda för småhus : Parametrisk studie i IDA ICE." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85658.
Full textThe housing and service sector accounts for about 40 percent of Sweden's total energy use. Thus, a reduction in energy use from housing construction is of great importance in order to reduce the climate impact from the sector. The greatest potential for reducing the climate impact of a building's life cycle is to address and take energy and climate issues into accountat an early stage when designing new single-family homes. Thus, high energy performance as a measure of energy efficiency for detached houses is of utmost importance for designing detached houses with lower energy use.The overall purpose of this study is to contribute knowledge about constructional technical measures and choices required to design energy-efficient detached houses. The study was conducted with a parametric study in the simulation program IDA ICE and manual calculations to evaluate how a detached house's energy performance is affected by changed insulation dimensions, reduced thermal bridges, reduced U-values for windows, different exterior wall types and geographical location.The results of the simulations show that there are good possibilities for detached house owners to influence energy performance. The need for heat and the purchased energy can be reduced through modifications of the climate shield in the house. The simulations show that an increase in the insulation thickness in the exterior wall only affects a marginal improvement of the house's energy performance when the reference structure is already relatively well insulated in the slab and the roof. However, the simulation with reduced thermal bridges has a greater impact. The simulations show that the energy performance is significantly affected by the thermal bridges as various data inputs have been tested in IDA ICE. The margin of error in manual calculations of thermal bridges are complex, so it is problematic to obtain a representative value when calculating these without simulation programs adapted for thermal bridges. The results of the simulations with reduced U-values for windows showed a marginal decrease in the energy performance, since the reference building windows already have relatively good U-values and G-values. And that the window area constitutes a relatively low part of the building's total area.The building with a wooden stud wall showed the best results of energy performance compared to the house of solid wood and light stud wall in the simulation with different exterior wall types. This despite a lower total wall thickness. The simulations with a changed geographical position showed a large variation in the primary energy result, where Kiruna received significantly lower primary energy compared with the reference location Ängelholm. The results are explained by the fact that the geographical adjustment factors completely or partially even out the difference between the climates. The results of the energy simulation also show that the results are affected to a large extent by the input data and assumptions that the user of the program decides on. Examples of this can be from the number of users who are to be expected to use the house, to indoor temperature, lighting and other types of equipment.For further studies, LCA calculations for the building materials and economic analyzes of changes in the climate shield are proposed.
Fu, Chenglong. "Automation of Building Energy Performance Simulation with IDA ICE." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284528.
Full textByggnader spelar en central roll för urbana områdens levbarhet och koldioxidavtryck. Ambitiösa mål för energibesparing och utsläppsminskning har skapat ett behov av en ny generation beslutsstödmetoder och verktyg som möjliggör detaljerad analys av städers energianvändning i stor skala. Urban byggnadsenergimodellering (UBEM) har nyligen utvecklats och är ett effektivt tillvägagångssätt för att bedöma energiprestanda för flera byggnader och systemeffekter för olika energiåtgärder inom den urban miljön. Den ytterligare uppskalningen av UBEM är dock begränsad på grund av bristen på automation av simulering som är inriktade på byggnadsenergiprestanda (BEP), vilket krävs för att hantera stora byggnadsbestånd. Det här examensarbetet syftar till att utforska utmaningar med automatisering av BEP-simuleringar och att utveckla en prototyp som ska fungera som en mellanprogramvara mellan UBEM och BEP-simuleringsmotorer, med fokus på IDA ICE(som är en simuleringsprogramvara). Resultatet av examensarbetet är icepy, som är ett verktyg för att automatisera BEP-simuleringar i IDA-ICE. Icepy använder IDA ICE API och Lispskript för att tillhandahålla interaktion mellan UBEM-processen och IDA ICE för att generera en initial simuleringsmodell (IDM), utför själva simuleringen och slutligen hanterar resultatet på ett automatiserat sätt. Genom att icepy implementeras som ett Pythonpaket kan den modifiera flera IDM:er och även exportera simuleringsresultat med några få kodrader. Området Minneberg i Stockholm har använts i en fallstudie för att validera och testa verktyget. Automatiseringsfunktionerna i icepy har möjliggjort känslighetsanalyser för olika byggnadsdesignparametrar, exempelvis studerades påverkan av olika värden på förhållandet mellan fönster och väggar genom användning av tre olika algoritmer för fönsterdistributioner. Det utvecklade verktyget har begränsningar i funktionalitet framförallt på grund av att enbart byggnadens ytterskal studerades i byggnadsenergisimuleringarna. Verktyget har dock visat sig vara ett effektivt tillvägagångssätt för att automatisera simuleringsprocesser, vilket visar på en god potential att också vidareutveckla dessa verktyg.
Parra, Molina Hector. "Design and analysis of a nZEB with IDA ICE." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264277.
Full textLindmark, Jonas. "Energikartläggning och energieffektivisering av Trinnliden 7:5 : Simulering av energibesparande åtgärder i "IDA Indoor Climate and Energy"." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105345.
Full textHäggkvist, Ylva. "Energieffektivisering i Stigbygeln : En förstudie." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122405.
Full textAndersson, Sara. "Våningspåbyggnad av miljonprogrammets flerbostadshus : Simulering av energiprestanda i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-115774.
Full textDuring the years 1965-1974 around one million new housing were built in Sweden, this was also known as the “miljonprogrammet”. Today, nearly a third of the Swedish housing stock is from this particular period, and many buildings are reaching the end of their technical lifetime. After the new EU directives Sweden have decided on developing it's on national goals to achieve smart energy consumption. To speed up this development can the renovations of the existing "miljonprogrammet" executed in combination with storey extension. Sweden is also facing growing housing shortage, much like during construction of the “miljonprogrammet” as well as limited areas both in urban and densely populated areas. By refurbishing buildings from the “miljonprogrammet” in conjunction with a storey extension, new housing can be built in a resource and energy efficient way. This should also improve the energy performance of the existing building. In this project, the energy performance of an apartment building, typical from this time, was evaluated and then compared to a modified building with a storey extension. A reference house located in Nacka, Sweden was used to simulate the annual energy usage in the software IDA ICE. The simulation yielded an energy usage of 197.1 kWh/m2 for the reference building and 167.1 kWh/m2 for the building with a storey extension. After the project it became clear that a storey extension on a building from the “miljonprogrammet” improved the existing building's energy consumption. At best, a building like the reference house can improve the energy classification from energy class G to E. Residential densification using storey extension is beneficial in many aspects. In addition to lowering the total energy consumption of the building it also creates new homes in a resource efficient manner. Society must seek to create enticements for property owners to renovate and execute energy efficient measures on their properties. One such example would be three-dimensional property formation which is also an alternative form of financing investment such as a renovation.
Denna studentuppsats, som inte är ett examensarbete, är genomförd i projektkursen 5EN040 under hösten 2015. Studentarbetet har bedrivits i sammarbete med Tyréns Umeå.
Uppsatsen ingår som ett kursmoment i projektkursen 5EN040 i energiteknik
Edström, Erik, and Christoffer Gunnarsson. "Energikartläggning och energieffektiviseringav Sörbyskolans förskola : Simuleringar genomförda med IDA ICE 4.61." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17607.
Full textToday’s society is very dependent on energy to function and to pursue development of renewable energy should have the highest priority. In 2013 81.6 % of the total produced energy in the world came from fossil fuels. The residential and service sector stands for 38 % of Sweden’s total energy use. Due to that fact it’s very important to have careful track of the energy performance of buildings and premises and what energy efficiencies can be applied. The school is located in south of Gävle and the property is owned and managed by Gavlefastigheter. In 2015 Gavlefastigheter is planning a renovation of the school and wants to develop energy efficiency proposals. The school is divided into six buildings which includes a dining hall, a gymnasium, a preschool and three other school buildings. In this rapport the preschool with appurtenant passage have been examined. The preschool and the passage is a one story building with an area of 883 m2. Particularly for the passage is that it’s heated with direct electricity. The survey have been conducted in a simulation program called IDA Indoor Climate and Energy. Boverket has set up guidelines and requirements for how much energy the newly built premises and residences may use depending on which climate zone the building is located. Gävleborg is located in climate zone II and premises in this climate zone may use a maximum of 100 kWh/m2 per year. A base model of the buildings current state were created to identify where the biggest energy losses occur. Afterwards the different energy efficiency proposals were compared with the base model to see how much energy could be saved. The base model were created by collecting data to IDA ICE. The data was collected by a physical inspection, interviews, comparison with another building on the school of Sörby etc. This work shows the distribution of supplied and xx energy in the building and what energy efficiency action that is most suitable to reduce the energy use. The result points to switching to new energy efficient windows gives the biggest savings in energy and a total of 19.8 kWh/m2, year can be saved. If all proposals is performed that will give a total saving of 37.8 kWh/m2, year. There have been a lot of assumptions and estimates to create the base model which makes it somewhat different from reality. To get a more correct model more physical examinations and measurements would be needed.
Flygare, Kristoffer. "Energisimulering av Fortifikationsverkets Kontorsbyggnad 1 : Energisimulering och utvärdering av renovering." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-109540.
Full textThe purpose of this project is to analyze an upcoming renovation of an office building in Boden, owned by Fortifikationsverket. The project makes use of the software IDA Indoor Climate and Energy and Revit to simulate the building as it will function after completed renovation. This way Fortifikationsverket has a reference value to use when evaluating the actual performance of the building. The project introduces the reader to Revit as well as to the simulation program IDA ICE and shows how energy consumption may be simulated when one wishes to renovate a building. Drawings, an energy report and measured energy consumption act as the basis for the simulation and where values are not available assumptions are made. The upcoming renovation consists of a new HVAC system and rules set forth by Fortifikationsverket which are to be followed when a building under their regime is renovated. These rules consists of reducing air leakage, lowering room temperature and installing more effective lightning, fans, heat exchangers and air cooling. The project finds that the upcoming renovation lowers the yearly energy consumption of the building by approximately 31 %, heating and electricity are included in this energy consumption and are lowered by approximately 29 % and 33 % respectively. The yearly use of heating and electricity is found to be 409 009 kWh and 446 905 kWh respectively. Of the various measures taken by the renovation the heat recovery is found to be the most effective. The electricity consumption was lowered most by more effective lightning and fans.
Tapper, Martin. "Energisimulering för optimala förhållanden för fritidshus : Simulering genomförd med IDA ICE." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20947.
Full textAziz, Pola, and Kelvin Huynh. "Energieffektivisering av miljonprogrammet i samband med våningspåbyggnad : Energisimulering i IDA ICE." Thesis, KTH, Byggteknik och design, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231549.
Full textA majority of houses that were built during the years 1965-1974 is usually referred to as the million program. After 40-50 years of use, the buildings have reached their technical life expectancy and need to be renovated. At the same time, the lack of housing shortage continues to exist while energy requirements from the government are becoming increasingly strict. The government maintains and run a strict policy to reduce the energy consumption of the housing sector in hope of achieving a more sustainable society. The study is based on a multi-family house located in Kaverös, Gothenburg at Barytongatan 4, which is part of the Kaverös Stage II project. In this study, energy conservation measures are investigated in connection with story extension and the applicable regulations when it comes to rebuilding and upgrading in accordance with BBR and PBL. Using the IDA ICE simulation program, different energy conservation measures could be studied. The result of each individual energy conservation measure, and a combination of these were then compared with the existing building's energy declaration and static. This study is limited to energy calculation and no financial calculations are presented The result shows that only a few interventions in the reference housing, according to the regulations BBR and PBL, can affect the energy consumption and reduce it from 147 kWh/m² to 104.8 kWh/m², which corresponds to 28.8 percent.
Adolfsson, Ida, and Kristin Boman. "Energidelning mellan byggnader : Utveckling av en gemensam energicentralsmodell i IDA ICE." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447394.
Full textPettersson, Eric. "Energikartläggning av flerbostadshus i Bureå : Undersökning av åtgärder i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137264.
Full textIn this thesis, I’ve investigated different energy efficient measures that can be done on a multifamily home in Bureå to reduce the total amount of energy used and perform a simpler economic calculation of the different measures. The investigation has been completed with the help of the software IDA ICE. Information about the building and its performance have been collected from Skebo.Data that is missing has been assumed to standard values. The different measures that have been investigated and simulated are: additional insulation on outside walls in different thicknesses, additional insulation on the attic floor, exchanging the double pane window to three pane windows, and installing a ventilation system with heat recovery. The results of the simulations reveal that additional insulation on the outer walls provide a decent reduction of energy up to 150 mm, which gives us a 12 % reduction. Skebo requested slightly less thickness to be used, therefore 70 mm has also been simulated in the case of combined measures. When the double pane windows are exchanged to three pane windows the effect is equal to the 150 mm additional insulation of the outer wall, giving a similar reduction in energy used. The largest reduction in energy is a change of ventilation system with heat recovery and increasing the air tightness of the building to reduce the amount of involuntary leakage of air. This measure reduce the district heating with 36 % alone. If ventilation system with heat recovery and increased air tightness is combined with the two other measures window change and additional insulation of the outer wall, the district heating is reduced up to 57 %. The smallest reduction in energy is additional insulation of the attic floor, a reduction of 2 %. This is because of its already well insulated state and no big improvements can be made. The result of the economic calculation shows that all measures have a higher life cycle cost than the reference case. Particularly expensive is the combination of change of ventilation system, window change and additional insulation on the outer walls.
Nilsson, Simon. "Undersökning av energieffektivisering av klimatskal på ett bostadshus." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126107.
Full textMargelou, Dimitra. "Indoor thermal comfort and associated adaptive measures towards an energy efficient new campus in Borlänge, Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-34556.
Full textJohansson, Michael. "Hantering av IFC-exporter från Revit till IDA." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12815.
Full textIt is extremely important to be able to export models directly from Revit to IDA for the energy simulations to be efficient. This report has a background description about how the IFC-format has been developed and how it is structured. However, the focus in the report is on how Revit can be implanted in the workflow, where both export and troubleshooting from Revit are described. IFC is the standard today to export data between various parts during the construction process and it is a format that is program independent, which means that it works across different applications. The current version of IFC is IFC4, but IFC2x3 is still the most used version since not every program has support for the new IFC4 format. It is extensive to figure out which data IDA requires for energy simulations, therefore this report contains both a tutorial for export settings and a file for automatic set correct export settings in Revit. To succeed with the energy simulations a requirement is that the space in the building is enclosed with walls, floor and roof, otherwise extreme thermal bridges will cause incorrect simulations. Therefore, there are several workarounds described in this report to correct these problems, including problems with windows, doors and problems with storage facilities . The description in this report is written with the assumption that the user do not have any experience with Revit. The guides were tested on a class of high school students that are studying the course CADCAD02. The result showed that when a problem occurs with a model it can easily be solved with the support from this report. Further differences between simulations in Revit and IDA were tested. The same model was simulated in eight different places and the standard deviation was calculated, this gave the coefficient range ±4 %, i.e. a simulation in IDA should not differ more than 4 % from the simulation in Revit. Similar results were found with the simulations of windows and doors, even though the difference was slightly lower.
Persson, Therese. "Analys av felkällor vid energisimuleringar : En jämförelse mellan IDA ICE och CFD." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136561.
Full textEskills, Jonathan. "Betydelsen av en byggnads planlösning vid energieffektivisering : Enligt simulering i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149407.
Full textThe residence and service sector stand for 40 % of the total energy use in Sweden. 90 % of that energy is used for households and facilities, which means that its energy use is only surpassed by that of the industry An appropriate solution for a national reduction in use of energy is therefore to streamline the energy efficiency for existing and planned buildings. The aim for this academic work is to examine how different methods of streamlining energy use is affected by building planning. Two real life buildings are to be compared and analysed. The buildings have identical outer dimensions and construction, and one of them has a comparatively more open building plan. Five different streamlining solutions are going to be simulated in the software EQUA IDA ICE; a lowering of the room temperature, an increased efficiency on the heat exchanger in the air handling unit, a decreased U-value (a Swedish building standard in energy transmission) for the windows, a decreased U-value for the roof and lastly a change from a proportional control system to a proportional integrating on the heating and cooling system. The results show that: A lowering of the room temperature by 2 ˚C, lessens the heating load for the air handling unit by 42,5 % in the building with a more open building plan, whilst the less open building sees a decrease of 35,8 %. The effect of an increased efficiency from 0,6 to 0,9 on the heat exchanger in the air handling is unaffected by a buildings planning. A lowered U-value for the windows from 1,8 to 1,1 W/m2,K increases the cooling load for the air handling unit by 130 % on the building with the more open planning. And at the same time the building with the less open planning is unaffected by the streamlining. A lowered U-value for the roof from 0,09 to 0,05 W/m2,K gives an increased performance on the heating load for both the heating system and air handling unit on the building with the more open planning, compared to that of the less open building. If the control system of the heating and cooling systems changes from a proportional integrating to a proportional one, the cooling load for the cooling system increases by 4,1 % on the building with the more open planning, whilst it increases by 17,1 % on the less open building. Streamlining the energy use of ventilation, cooling and heating systems has a bigger impact on buildings with a more open planning compared to those with a less open building plan. A less open building plan is better affected by the streamlining of the energy transmission trough the construction compared to a more open planning.
Sanz, Aceituno Angel Luis. "Control algorithms for energy savings in irregularly occupied buildings." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-15155.
Full textEnglund, Marcus, and Moen Simon Sahlström. "Energikartläggning av Kv. Freden, Gävle : Simulering av åtgärder och dess energibesparingspotential med modellerings- och simuleringsprogram IDA ICE." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20189.
Full textCarbon dioxide levels are increasing as a consequence of larger energy use worldwide. This has led to regulations and rules of emission and energy consumption. In order to stop global warming and reduce energy consumption, EU has agreed on four common goals to achieve by the year 2020, also known as the 20-20-20 goals. Sweden has also come up with its own environmental goals to achieve by the year 2020. They include increasing the share of renewable energy by at least 50 percent, improve the use of energy by at least 20 percent and increase the share of renewable energy in the transportation sector by at least 10 percent. Due to the laws and requirements related to stricter energy consumption and carbon emissions companies strive to use more energy efficient technology and more energyconscious behavior. Energy audit is an effective and an important tool in identifying and illustrating a company's energy usage for the clarification of future measures and improvement. The thesis aims to illustrate Kv. Freden's use of energy and come up with both economically and energy saving measures to reduce its and other similar building's energy consumption. Six questions have been used to determine the energy distribution in the building and find defects in the management and maintenance of the indoor climate and develop cost-effective solutions for the choice of measures. Five methods were chosen for approaching and answering the questions. A literature review was performed using keywords such as "Energy Saving", "Energy Audit" and "Behaviour" in online databases containing scientific articles. Thereafter an empirical analysis of the data supplied for the building was performed, which enabled modeling and simulation of the building in the program IDA ICE 4.6.1. A thermography and a qualitative survey regarding energy conscious behavior were performed as proof of assumptions. The ventilation in this thesis is found inadequate after applied methods. With simulated FTX-systems installed in the building, a maximum energy saving potential about 17 percent is achieved, which corresponds to a energy use of 97 kWh/m2. Excluding FTX, the simulated measures which prove to be the most profitable for the building is the sealing of doors and windows in order to reduce infiltration. These two measures are the most cost effective energy saving solutions regarding Kv. Freden and similar buildings. The building's simulated energy use is represented by 29 percent electricity and 71 percent of district heating usage, which compared with the energy data provided by Gävle Energi relates to a reliability equivalent to 97.5 percent and 96 percent. The simulation program IDA ICE proved to be an efficient tool for the simulation of a building's energy use and application of possible measures.
Svensson, Andreas. "Energibesparingar i tegelbyggnader." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149438.
Full textThis work is about a residential area consisting of five buildings on Vallhallavägen 38 in Örnsköldsvik, Sweden. The work was done because there was an interest in seeing what types of energy savings you could do on the buildings and how much energy you could save by doing them. The energy savings that where examined where additional insulation on the exterior walls, exchange of current windows to better ones, modification of the ventilation systems, and implementation of solar cells and solar collectors on the buildings. All calculations of the building's energy savings were done by IDA ICE 4.8, a simulation software developed by the Swedish company EQUA Simulation AB for studies of indoor climate and energy use in buildings. After all the calculations of the building's energy use were done, economic calculations were made for each type of energy saving to find out if an investment should be done or not. The results showed that all energy savings would reduce the energy use of the buildings to a certain extent, but that it probably would be wise to not invest in them all, as some of them saved very little energy compared to how comprehensive it would be to install them in the buildings. The biggest saving that resulted in a 34,5% reduction of energy use was gained by replacing the ventilation systems, while the smallest saving that resulted in a 3,6% reduction of energy was gained from additionally isolating certain parts of the building’s exterior walls.
Li, Ning. "Environmental Assessment of a Residential Building According to Miljöbyggnad." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19454.
Full textLindgren, Emil. "Känslighetsanalys vid energiberäkningar : Analys och tillämpning av metoder för känslighetsanalys av osäkra parametrar vid energiberäkningar i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160015.
Full textTo build energy efficient buildings are becoming more important and as a response to the Energy Performance of Buildings Directive from the EU, harder requirements have been introduced into Boverket's building regulations (BBR). Higher demands are therefore placed on accuracy in energy calculations during the design phase of a building. When performing the energy calculations several parameter settings and assumptions are made that are linked to the building systems, envelope and the human behaviour inside the building. It is common that uncertainties occur around these parameter settings and this can often cause uncertainties in the calculation result. Different methods of sensitivity analysis can be applied to investigate which impact uncertain parameters have on the calculation results. The purpose of this master thesis was to develop and apply a method for computing a comprehensive sensitivity analysis of uncertain parameters in energy calculations with the simulation tool IDA ICE. Furthermore, an evaluation was made of the role of sensitivity analysis in combination with energy calculations and how the results can be used to explain differences in predicted and actual energy use for a property owner. The initial preparations resulted in a method for global sensitivity analysis for energy calculations in IDA ICE, which was the basis for the most part of this thesis. This method uses the standardized regression coefficients as sensitivity indices, which was calculated by applying Monte Carlo simulations and multiple linear regression. A simpler method for local sensitivity analysis was also investigated. In this thesis, a number of different cases were studied and for all of them, the influence of the parameters on the total energy use and the primary energy number was investigated. A building model was created for a building located in Umeå with district heating as heating source. For this building model, Monte Carlo simulations and sensitivity analysis were executed for the base case, a case with geothermal energy as heating source, and a case where the building was used as office spaces. The importance of climate conditions was investigated by using the same building model in alternative geographical locations and conduct sensitivity analysis with the developed method. Changes in operations, the heating source and the climate, all affected the influence of the parameters on the calculation results. One conclusion that could be made from the results was that uncertainties in parameters linked to the building models' heating and ventilation systems had a great impact on the calculation results compared to the other parameters. Also, the specific heat transfer coefficient of the thermal bridges was among the parameters with the greatest influence. The parameters linked to human behaviour also had a relatively large influence while parameters linked to the building envelope in most cases were found to have less influence than the other parameters examined.
Ameen, Arman. "Energianalys och energieffektivisering av en förskola : Söderskolan (Slottets förskola) i Gävle, simulering utförd genom IDA ICE 4.61." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17009.
Full textRosendahl, Karl-Magnus, and Marcus Vedin. "Varsam solavskärmning med fönsterfolie : En fallstudie som simuleras i IDA ICE avseende termisk komfort." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32470.
Full textÖstlin, Olof, and Havik Mikaela Sjödén. "Kalibrering och validering av en IDA ICE modell : Ett flerbostadshus från 1970-talets miljonprogram." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32798.
Full textThis thesis is a case study carried out on a Million Homes Program (MHP) building in Andersberg owned by AB Galvegårdarna, whom are also the clients. Since MHPbuildings are poorly insulated and have major heat leaks, it is of great interest today to investigate any improvement measures as these buildings have a potential to reduce their energy use by 50 percent. This is possible with the help of the calibrated model in a building energy performance simulation (BEPS) tool, which is the purpose of developing in this thesis. Through a literature study, visit in the building and gathering protocols, drawings and measured data, a model could be built and calibrated in IDA Indoor Climate and Energy was started. Drawings and data were provided from AB Gavlegårdarna and site visits were made to supplement these by taking measurements of temperatures in the common areas. On site, the dimensions of the building were also measured to ensure that the building had not been upgraded since the assigned drawings were created. When all the information was considered to have been obtained, all data was entered into IDA ICE where a model of the building was also built up. For the thermal bridges, the COMSOL Multiphysics simulation tool was used to generate their individual linear heat loss coefficient which were used as input in the building model of IDA ICE. The calibrated model developed in this project turned out to have a deviation of 10 % against annual district heating energy. The simulated building heat loss coefficient differed with 19.6 % compared to the one produced with a newly developed energy signature method for the corresponding year which may be caused by errors in the simulation tools and uncertainty concerning immeasurable parameters. The final conclusion of this work was that the performance gap also occurred on this model developed in this work, which seems to be hard to avoid. During the site visit, water collections on the roof of the building were discovered which was a surprise to the authors as there were documents that said that the surface layer had been changed in 2015 and that there were indications that this could have significant consequences if not addressed which is mentioned in the chapter of discussion. Future work on why residents’ behavioral patterns are underestimated would be something to continue with in future studies in order to reduce the “performance gap” in BES models.
Martin, Daniel. "The impact of building orientation on energy usage : Using simulation software IDA ICE 4.7.1." Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24825.
Full textSaidzadeh, Millad. "Energimodellering av ett flerbostadshus - en parameterstudie : Granskning av energianvändning och termisk komfort." Thesis, KTH, Byggvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123997.
Full textBuilding stock consumes 40 % of total energy usage in Sweden, dwellings contribute almost 30% of the proportion. With an interest on the parametric analysis and its corresponding energy saving potentials, the investigation on the sensitivity of selected building parameters in a typical Swedish slab house is performed in the study. Based on the identification to the behavior of target sensitive parameters, the upgrading potential of thermal comforts is comparably analyzed with respect to approach the optimization design of further retrofitting scenario and uncertainty guidelines. A slab house built after 1970 is selected as the represented case building with a detailed typology introduction. In the study, IDA ICE 4.5 is applied to perform both the energy simulation and thermal comfort estimation. Based on the local screening analysis and the setting of criterion system, the ranking of the target parameters is rated systematically. The study is meant to be useful for the presentation of energy saving potentials and consideration of input parameters on energy calculations, and increase understanding of how thermal comfort is affected by various parameters. The results show that accomplished with the transformation of F-system to FTX-system, the applicable ventilation system efficiency shows the largest energy saving potential and improved thermal comfort, and the indoor temperature shows the largest sensitivity to the total energy profile. Comparably, along with the indoor temperature, the performance of glazing system in terms of the g-value is recognized as the parameters with the highest consideration. Based on the sensitivity analysis, the correlation between the energy savings and thermal comfort upgrading is verified, which indicate the possibility of providing optimal design scenario for both architectural error guidelines and further building retrofitting.
Melin, Tobias. "Energikartläggning av ett 1970-tals lägenhetshus på Skarpövägen i Nacka kommun : Simulering av energibesparande åtgärder i ”IDA Indoor Climate and Energy”." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-90554.
Full textPå uppdrag av PQR Consult AB i Stockholm har detta examensarbete utförts under våren 2014. Syftet var att utföra en energikartläggning av byggnaden Skarpövägen 1 och simulera energibesparande åtgärder i programmet IDA Indoor Climate and Energy. Utöver detta har en livscykelkostnadsanalys gjorts för att underlätta ekonomiska jämförelser. Även tvättstugan, Skarpövägen 23, har delvis kartlagts eftersom den har en hög energianvändning med all elutrustning i byggnaden. Resultatet i energikartläggningen visade att energianvändningen var betydligt högre än energideklarationens värden. För Skarpövägen 1 var energianvändningen 193 kWh/m2 vilket är ca: 25 % högre än energideklarationens 155 kWh/m2. Efter att ha utvärderat de simulerade energibesparingsåtgärderna för Skarpövägen 1 så dras slutsatsen att den mest lönsamma investeringen skulle vara att installera ett värmeåtervinningssystem vilket skulle ge en besparing på 47470 kWh fjärrvärme per år och ha en återbetalningstid på 14 år. Resultatet för tvättstugan visade att 14880 kWh el årligen skulle sparas om torkskåpen byttes ut, vilket är en sänkning med ca: 75 % av elbehovet jämfört med befintliga torkskåp. De energibesparande åtgärderna har visat att utrymme finns för besparingar i byggnaderna vilket är ett viktigt steg på vägen att minska energianvändningen i bostadssektorn.
Brorsson, Martin, and Erik Danielsson. "Vätskekopplade värme- och kylåtervinningssystem : Utveckling av ett verktyg för energiberäkningar." Thesis, KTH, Installationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126026.
Full textOja, Sofie. "En studie av möjliga energieffektiviseringar i ett äldre flerbostadshus : Simuleringar genomförda i IDA ICE 4.6.2." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-121984.
Full textEngelmark, Johanna. "Förbättringsåtgärder vid nybyggnation av småhus för att uppnå kommande energikrav : En simuleringsstudie i IDA ICE." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24364.
Full textThe EU has demanded lower energy consumption in buildings through a new directive where each member state has been assigned the task of developing new energy consumption targets for their respective country. In Sweden, Boverket has been assigned this responsibility. There is a concern in the Swedish construction industry that it will be difficult to meet these new requirements. Manufacturers of small houses usually have a standardized design that they now may need to adjust. The purpose of this thesis was therefore to investigate whether a single-family house manufacturer needs to change its standard construction, and if so, what changes could be made to achieve the new requirements for energy usage. By studying current energy requirements and Boverket's proposal for future requirements as well as theories in architectural engineering, the theoretical basis for the thesis has been laid out. A literature study has also been performed of previous studies in the field. Particularly studies of home improvements to get energy-efficient houses have been of great help for this work. A single-family house has been constructed and simulated in the IDA ICE simulation program. The house was made out of wood with a ground source heat pump and FTX ventilation located in climate zone 1. Eight improvements in the house design have been studied with new simulations to identify which of these improvements are appropriate to implement. The most suitable improvements have finally been combined to meet the new energy requirements. The study shows that the current house construction design does not meet future requirements. Based on the delimitations that have been made for this thesis, it is recommended that the following three measures are to be taken; A heat pump with a COP of 4 instead of 3, windows and doors with a U-value of 0.8 W/(m2*K) instead of 1,2 W/(m2*K) and outer walls with a U-value of 0.1 W/(m2*K) instead of 0,137 W/(m2*K). These recommendations are based on the assumption that the proposed new requirements are also applicable for climate zone 1.
Lindgren, Rickard. "Energikartläggning av en äldre fastighet : En kartläggning kring energiförbrukningen och kostnadsbesparande lösningar för en äldre fastighet." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-123319.
Full textSmedberg, Simon. "Energikalkyl med besparingsåtgärden : Ett examensarbete hos Varberg kommun." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150955.
Full textMårtensson, Sanna. "Analys av energieffektiviseringsåtgärder och uppvärmningsalternativ vid Järvsö reningsverk." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85340.
Full textMost of the Swedish wastewater treatment plants were built during the second half of the 20th century when the heating demand was supplied by burning fossil fuels. Järvsö wastewater treatment plant is an example of a building that still uses fossil oil for heating. This master thesis aimed to minimize the usage of oil at the plant, by studying energy efficiency measures and an alternative heating solution. The goal was to present a cost- and energy-efficient solution to Ljusdal Vatten, which owns and operates the treatment plant, to minimize oil use. The project was divided into two parts, where the first part included energy simulation performed in the simulation software IDA ICE. In the program different efficiency measures categorized into three categories: building, ventilation system, and a combination of these measures were studied. The heating demand was highly affected by replacing the air handling unit with a new unit. Measures connected to the building, however, had a low effect on the demand. During the second part of the project, a case study was carried out where several heat pump solutions and a pellet boiler were assessed based on a simplified multi-criteria analysis in two steps. Initially, the respective alternatives were assessed based on four criteria: independence, reliability, time requirement, and suitability. Secondly, the reduction of carbon dioxide equivalent emissions which a switch of heat source was calculated, and an investment calculation, including the payback time and life cycle cost, was performed. The interesting alternatives were ranked, and the geothermal heat pump received the highest score. The recommendation to Ljusdal Vatten was to invest in this technology. Furthermore, the result showed that all studied heating sources were profitable investments. The thesis conclude that a change of the air handling unit and heating solution is cost-effective and can be applied to replace the current oil use with an alternative fossil-free energy carrier.
Andersson, Sara. "Energisparåtgärder i samband med påbyggnad av nya bostäder : En fallstudie av Röda längan i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122069.
Full textAs older buildings in our housing stock are in increasing need of extensive renovations, it further enhances our social requirements. It is then needed alongside with renovations to find whole measures that yields energy savings which also is financially profitable. In this report, we examine the possible energy savings alongside with the profitability of the energy measures connected with extensions of new housing on top of an existing housing. The current heating system of the building is replaced with geothermal heating, which is also working through to the ventilation system. Thereafter the building is extended with three new floors. The report also evaluates if an extension of new housing in the individual case is to be seen as an extension or a reconstruction, together with the demands of which are put on an altered building in accordance to PBL and BBR. With the help of the computational energy software IDA ICE, the affect from the different energy measures could be studied. The yearly economical savings was then compared to the cost of the different measures. The measures were deemed profitable if the value of the yearly savings exceeded the initial cost. For the specific case, the measures of energy savings gave an considerable improvement for the extension, both in energy but also in the economical sense. The investment of the extensions is to be seen payed via sales of apartments, and the payback on the actions taken on the existing building is estimated to within 10 to 15 years. for the individual case the possible yearly energy savings, after completed measures, is upwards of 74 percent, which translates to 130 kWh/m2 per year. This report also states that, in specific case, extensions of new housing is to be seen as an extensions and that four geothermal heating pumps are enough to reach sufficient energy savings together with economical profitability.
Köyluoglu, Idris, and Hussein Moalin. "Kalibrering och validering mot uppmätt data med hjälp av IDA ICE : En fallstudie av miljonprogrammets flerbostadshus." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33201.
Full textKuldkepp, Térèse. "Ett mikroklimats påverkan på en byggnads energianvändning." Thesis, KTH, Uthålliga byggnadssystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101256.
Full textThe idea of profiting from a greenhouse to create a local microclimate around a building is not new, in 1976 such a house was built in Saltsjöbaden outside of Stockholm. The house was built inside a greenhouse, and there are also other examples from both Sweden and abroad. However, this is not a widely spread building solution, and there are only a few buildings that are built in Sweden according to this principle. The idea is that a glass building that encloses an internal building will provide warmer temperatures around the house and as a result the building's heating demand could be reduced. In this thesis a building enclosed in a glass building was simulated in the simulation program IDA ICE 4.21. The model should prove principle and is thus not based on an existing building. The building has been assumed to be an office building that is based in Stockholm. The glass building has no mechanical ventilation, and no supply of heating or cooling. Airing hatches are opened when the temperatures in the microclimate reaches temperatures above the comfort level. The results showed that for a building of new built standard, 30 % of the heating demand is reduced, which led to a decrease of 10.6 % of facility energy and a decrease of 6.0 % of the total energy use for the building. On a less insulated building the effect was greater, the heating demand decreased 41.1 %, facility energy decreased by 30.8 % and the total energy use was reduced by 22.9 %. When the windows in the enclosed building have low g-values, as in the case for the building of new built standard, the cooling demand increased with the usage of a microclimate. With the case of windows having a higher g-value, like the less insulated building, even the cooling demand decreased as the microclimate was added. A microclimate makes the average temperature per month increase outside the internal building envelope. The increase is larger when the number of hours with sun is higher. During months with virtually no sun at all, the microclimate has only marginally higher temperature than the outside temperature. During a day the temperatures vary much more inside the microclimate, than outside. At night or at other times when there is no sunshine, the temperature is only a few degrees above the outside temperature, but when the sun is out, the differences may be 10 °C – 15 °C between the temperature in the microclimate and the outdoor temperature. The use of various set points for the temperature controlled airing hatches during the summer compared to the rest of the year allows for better utilization of the microclimates potential for saving energy.
Alkhatib, Mehdi. "Optimering för kostnadseffektiv energieffektivisering vid ombyggnad." Thesis, KTH, Byggvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98785.
Full textHasselrot, Rasmus. "Investigation and evaluation of high-rise buildings in IDA ICE : A comparative study of energy efficient residential high-rise buildings in different climates." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-103874.
Full textStolt, Fanny. "Kv. Cirkusängen : Studie av installationsprojekteringen med fokus på byggnadens Energisignatur." Thesis, KTH, Installations- och energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145728.
Full textTo fulfill the building codes of Boverket – The Swedish National Board of Housing, Building and Planning and receive the environmental certificate from SGBC – Swedish Green Building Council there is an interest in energy consumption predictions and energy monitoring. The Swedish real estate company Humlegården has constructed a new headquarter for the banking business Swedbank: kv. Cirkusängen in Sundbyberg, Stockholm, Sweden and Humlegården has an interest in long-term energy management and optimization of the property´s energy system. This Master thesis investigates the static and dynamic energy calculations of kv. Cirkusängen focusing on the dynamical model in Indoor Climate and Energy simulation software IDA ICE. The purpose of the thesis is to define the Energy Signature of kv. Cirkusängen to be used as basis for the energy management. A building´s Energy Signature can be defined by measured energy consumption and/or by the dynamical model in IDA ICE and can be used for long-term measurement and energy analysis and real-time visualization of consumed energy. The IDA model of kv. Cirkusängen has been modified to investigate the impact of certain parameters on the energy consumption. The aim has been to optimize and create a representative IDA model and thereby create a well-defined Energy Signature. Furthermore, the aim of the thesis is to give a good understanding of how IDA ICE can be used to define the Energy Signature of kv. Cirkusängen.
Bengtsson, Magnus, and Jens Nilsson. "Klimatsimulering av ett kyrktorn uppfört i sten." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35382.
Full textAl, hamdany Yarub. "Simulering och energieffektivisering för en kontorsbyggnad iForsmark." Thesis, Högskolan i Gävle, Energisystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-28557.
Full textAndersson, David, and Philip Olsson. "Hur kan en skola med högre energianvändning än det svenska genomsnittet energieffektiviseras? : Energikartläggning." Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24484.
Full textThe European Union as a whole is one of the largest energy users and has one of the world's largest greenhouse gas emissions. To reduce global warming, targets have been set to ensure that the average temperature on the earth does not increase more than 2 degrees since the pre-industrial time. Nearly 40% of Sweden's total energy use comes from the building and services sector which in context with that the 2020 targets approaching contributes to the increased need of higher energy efficiency of buildings. Energy audits is a tool for determining what has the greatest potential for saving energy before efficiency measures occurs. The thesis includes an energy audit of Trödje primary and middle school, administered by Gavlefastigheter. The study was performed using IDA Indoor Climate and Energy simulation tool. IDA ICE was used to modulate the existing building where all data for the school was included. The vision of the thesis is to investigate how much energy which is possible to save through energy saving measures and which action that is most effective. The potential energy saving in the school is high, the school uses 42.6 kWh/m2year more than the average for Gavlefastigheter schools, which corresponds to 21 %. The results show that the complexity of the school and the reconstruction, also called the paviljong, are a major factor in the high energy consumption. The school's energy use has a potential to decrease by 17 %, which did not correspond to the 25 % target set for the work. The work shows that the greatest savings potential exists through the exchange of windows and heat exchangers in the ventilation system, but also that the measures that are assumed to give the greatest savings are not always the most effective.
Nilsson, Alexander. "A new energy strategiy for controlling heating system in existing buildings : Investigation in IDA ICE simulation environment." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105363.
Full textHöglund, Marcus, and Anton Stenås. "Komfort- och energianalys vid installation av markiser på Högskolans i Gävle glasfasader : Mätningar och IDA ICE-simuleringar." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36108.
Full textThe University of Gävle plans to install solar shading awnings on the southern glass facades of the main entrances. Since construction, the main entrances Rävhallen and Fårhallen have suffered from poor thermal indoor comfort due to heat leakage and overheating due to the windows on the facades. This thesis was done in order to map and investigate the thermal indoor comfort in the University of Gävle's main entrances. The work also aimed to simulate and analyze annual energy consumption and thermal indoor comfort before and after the installation of solar shading awnings on the building's glass facades, in the simulation program IDA ICE. A comfort survey was conducted by measuring thermal comfort and indoor temperature ranges on two occasions in April. The measurements were made during a cloudy day and a sunny day at the same outdoor temperature, to investigate the effect of solar radiation on the building's thermal comfort and indoor temperatures. The comfort survey showed that the thermal comfort in Rävhallen and Fårhallen was insufficient as overheating occurs at high solar radiation. Data necessary for modeling and simulation was collected through observations, estimates, and dialogs with operating technicians from Akademiska hus. After data collection, a model was constructed in the simulation program IDA ICE. Before simulation, the model was validated using previously measured temperatures during the month of April. Then the building's energy consumption and thermal indoor comfort were simulated over a whole year, without awnings, and with awnings. The results showed that the thermal comfort was significantly improved by the awnings installations. High peak temperatures that previously occurred in the building decreased because of the reduced solar radiation through the glass facade. The total annual energy demand increased from 605 MWh to 635 MWh. However, the annual energy demand for cooling decreased from 3,4 MWh to 3,2 MWh. The increase in energy consumption was due to the awnings reducing useful heat from solar radiation, especially during the heating season. Prior to further research, a more efficient control technique of the awnings and a more detailed model to improve the simulation results are proposed. When applying better adapted control of the awnings, the energy saving potential is considered to be greater. It was concluded that awnings can significantly improve indoor thermal comfort, but that energy consumption may increase depending on control technology.
Andersson, Julia, and Fredrik Larsson. "The Effect of Global Warming on the Indoor Environment : A Simulation Study on Single – Family Houses in the Stockholm Region." Thesis, KTH, Hållbara byggnader, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301282.
Full textDenna uppsats huvudsakliga mål har varit att simulera och utvärdera förändringen mellan inomhusklimatet idag och år 2070 på grund av klimatförändringarna. Den skapade modellen var uppbyggd av delar valda utifrån lösningar och material som vanligtvis används vid byggandet av småhus i Stockholmsregionen 2020. Detta har gjorts genom att utvärdera statistik, litteratur, vanliga metoder och byggregler. För att simulera ett representativt hus byggdes en modell i mjukvaran IDA ICE. Modellen testades mot ett nuvarande och framtida utomhusklimat och därefter utvärderades den resulterande inomhusmiljön Det framtida utomhusklimatet har konstruerats genom prognoser baserade på scenarier som bestäms av FN:s klimatpanel (IPCC). Hypotesen var att småhus som byggts runt 2020 inte kommer att vara beboeliga år 2070 på grund av de ökade inomhustemperaturerna på sommaren, och att förändringar kan göras för att bekämpa denna potentiella uppvärmning av inomhustemperatur.Resultaten av simuleringarna visar att inomhusmiljön var starkt beroende av utomhusklimatet, byggtekniken och designen. Vilket betyder att förändringar i byggnaden avseende design, stomme, material och installationsteknik kommer att resultera i en förändring av inomhusmiljön. Fortsatt steg inomhustemperaturerna i modellen över acceptabla nivåer, oavsett framtida scenario. Flera ändringar och tillägg till modellen har därför testats, för att undersöka om det kan leda till en sänkning av den maximala temperaturen under riktvärdet, på ett hållbart sätt.Ingen av de individuella förändringarna minskade temperaturerna under de acceptabla nivåerna för alla scenarier samt ansågs vara ett hållbart alternativ. Några mer hållbara ändringar minskade inomhustemperaturerna under riktvärdet för de svalare scenarierna. Medan vissa mindre hållbara modifieringar minskade temperaturerna under kravet för alla scenarier. En kombination av de mer hållbara modifieringar testades också, vilket sänkte temperaturerna under tröskelvärdet för alla scenarier, utom de två mest extrema.Det förändrade utomhusklimatet har stor inverkan på den simulerade inomhusmiljön. Detta kan ses som en stark indikation på att den verkliga inomhusmiljön och termiska komforten för småhus också kommer att påverkas i framtiden. Det är svårt att förutsäga huruvida småhus år 2070 kommer att betraktas som obeboeliga då det påverkas av många variabler. Den simulerade inomhusmiljön kan dock förbättras genom att ändra eller lägga till delar i modellen.
Lindqvist, Simon. "Energikartläggning och förbättringsförslag för lättbetonghus i Mellansverige." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29907.
Full textEnergy efficiency in dwellings is crucial in reaching goals set within the European Union, but homeowners won’t invest in energy-efficient measures unless it is cost-effective. This study is going to investigate the energy savings and cost-effectiveness of different renovating measurements for a light-concreate house in Söderhamn. The aim is to investigate the building’s energy balance and how renovating measurements affect the energy use, the indoor climate and the operating cost. An energy audit was performed on the building for the purpose of investigating the various measurements. The audit was achieved with IDA Indoor Climate and Energy simulation tool, which was used to construct a reference model that included data from the studied building. Previous research in the field were used for selecting the renovating measurements used in this study. The results of the simulations were then used to carry out a cost analysis with the equivalent annual cost method to evaluate the annual cost saving for each measurement. The carbon dioxide level was measured in the beginning of the project to investigate the indoor air quality in the building and if it needed to be addressed. The primary energy use of the building was 148 kWh/(m2·year), which was 43 % more than Building regulations energy requirements for single-family households. The heat demand was 18 209 kWh/year and could be reduced by 42,7 % when installing a created renovation package and resulting in the primary energy use of 109 kWh/(m2·year). The three most energy efficient measures were adding extra insulation on external walls, insulating the roof and decreasing the indoor temperature level. The most cost-effective measure was to insulate the roof if the upstairs area were heated and insulate the basement walls was the least cost-effective of the energy efficient measures. The ventilation problem was fixed with installation of an FTX system that switched to an air flow of 0,35 l/(s·m2) to 0,1 l/(s·m2) during unoccupancy. Complementing the heat demand with a heat pump was a cost-effective measure but did increase the primary energy use. It is recommended to finish isolating the roof if the family is interested in using the unoccupied space.
Mengistu, Meron Mulatu. "Study of Solar Cooling Alternatives for Residential Houses in Bahir dar city :." Thesis, KTH, Energiteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-63419.
Full textMäkitalo, Jonatan. "Simulating control strategies of electrochromic windows : Impacts on indoor climate and energy use in an office building." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212595.
Full text