Academic literature on the topic 'Ideal fluids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ideal fluids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ideal fluids"
Pagonabarraga, I., and D. Frenkel. "Non-Ideal DPD Fluids." Molecular Simulation 25, no. 3-4 (2000): 167–75. http://dx.doi.org/10.1080/08927020008044122.
Full textRobinet, J. C., and X. Gloerfelt. "Instabilities in non-ideal fluids." Journal of Fluid Mechanics 880 (October 4, 2019): 1–4. http://dx.doi.org/10.1017/jfm.2019.719.
Full textALHUSSAN, KHALED. "METHOD OF ENERGY TRANSFER." Modern Physics Letters B 19, no. 28n29 (2005): 1663–66. http://dx.doi.org/10.1142/s0217984905010165.
Full textWang, Yi, Jiawen Yang, Li Xia, Xiaoyan Sun, Shuguang Xiang, and Lili Wang. "Research on screening strategy of Organic Rankine Cycle working fluids based on quantum chemistry." Clean Energy Science and Technology 2, no. 2 (2024): 169. http://dx.doi.org/10.18686/cest.v2i2.169.
Full textHochgerner, Simon. "Feedback control of charged ideal fluids." Nonlinearity 34, no. 3 (2021): 1316–51. http://dx.doi.org/10.1088/1361-6544/abbd83.
Full textRajeev, S. G. "The Geometry of Non-Ideal Fluids." Journal of Physics: Conference Series 462 (December 31, 2013): 012043. http://dx.doi.org/10.1088/1742-6596/462/1/012043.
Full textBardos, Claude, and Edriss Titi. "Euler equations for incompressible ideal fluids." Russian Mathematical Surveys 62, no. 3 (2007): 409–51. http://dx.doi.org/10.1070/rm2007v062n03abeh004410.
Full textVitale, Salvatore, Tim A. Albring, Matteo Pini, Nicolas R. Gauger, and Piero Colonna. "Fully turbulent discrete adjoint solver for non-ideal compressible flow applications." Journal of the Global Power and Propulsion Society 1 (November 22, 2017): Z1FVOI. http://dx.doi.org/10.22261/jgpps.z1fvoi.
Full textSPENCER, A. J. M. "Fibre-streamline flows of fibre-reinforced viscous fluids." European Journal of Applied Mathematics 8, no. 2 (1997): 209–15. http://dx.doi.org/10.1017/s0956792597003045.
Full textFedosov, Dmitry A., Ankush Sengupta, and Gerhard Gompper. "Effect of fluid–colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids." Soft Matter 11, no. 33 (2015): 6703–15. http://dx.doi.org/10.1039/c5sm01364j.
Full textDissertations / Theses on the topic "Ideal fluids"
Haut, T. H. "Nonlocal formulations of ideal fluids and applications." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337184.
Full textKrstulovic, Giorgio. "Galerkin-truncated dynamics of ideal fluids and superfluids : cascades, thermalization and dissipative effects." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00505813.
Full textGross, Markus [Verfasser], Ingo [Gutachter] Steinbach, and Fathollah [Gutachter] Varnik. "Thermal fluctuations in non-ideal fluids with the Lattice Boltzmann method / Markus Gross ; Gutachter: Ingo Steinbach, Fathollah Varnik ; Fakultät für Physik und Astronomie." Bochum : Ruhr-Universität Bochum, 2012. http://d-nb.info/121444055X/34.
Full textDouglas, Jamie George Iain. "Linear stability analysis of non ideal tokamak plasma fluid models." Thesis, University of Sheffield, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614645.
Full textRogers, Charles. "Computational Fluid Dynamics Analysis of an Ideal Anguilliform Swimming Motion." ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1940.
Full textShokina, Nina Yurievna. "Numerical modelling of multi-dimensional steady ideal gas and fluid flows." [S.l. : s.n.], 2000. http://elib.tu-darmstadt.de/diss/000101/newphd.pdf.
Full textFridlyand, Alex A. "Statistical properties of ideal two dimensional fluid flows : a numerical study." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/12227.
Full textWorthington, Joachim. "Stability theory and hamiltonian dynamics in the Euler ideal fluid equations." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/16766.
Full textLeão, Neto José Pereira. "Força e torque de radiação sobre uma partícula viscoelástica em um fluido ideal." Universidade Federal de Alagoas, 2015. http://www.repositorio.ufal.br/handle/riufal/1695.
Full textWilliams, Rhys L. "Exact, asymptotic and numerical solutions to certain steady, axisymmetric, ideal fluid flow problems in IR³." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299262.
Full textBooks on the topic "Ideal fluids"
C, Hsieh K., and Langley Research Center, eds. Stability of capillary surfaces in rectangular containers: The right square cylinder. National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textdi Mare, Francesca, Andrea Spinelli, and Matteo Pini, eds. Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49626-5.
Full textW, Gottschalk Carl, Berliner Robert W. 1915-, and Giebisch Gerhard H, eds. Renal physiology: People and ideas. American Physiological Society, 1987.
Find full textR, Spall John, and Langley Research Center, eds. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF,□ or equilibrium air chemistry. National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textR, Spall John, and Langley Research Center, eds. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF, or equilibrium air chemistry. National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textPelant, Jaroslav. Numerical solution of flow of ideal fluid through cascade in a plane. Information Centre for Aeronautics, 1987.
Find full textE, Marsden Jerrold, and Rațiu Tudor S, eds. Hamiltonian structure and Lyapunov stability for ideal continuum dynamics. Presses de l'Université de Montréal, 1986.
Find full textPini, Matteo, Carlo De Servi, Andrea Spinelli, Francesca di Mare, and Alberto Guardone, eds. Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69306-0.
Full textKopachevsky, Nikolay D. Operator Approach to Linear Problems of Hydrodynamics: Volume 1: Self-adjoint Problems for an Ideal Fluid. Birkhäuser Basel, 2001.
Find full textBook chapters on the topic "Ideal fluids"
Newman, Jay. "Ideal Fluids." In Physics of the Life Sciences. Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77259-2_8.
Full textJou, David, José Casas-Vázquez, and Manuel Criado-Sancho. "Non-ideal Fluids." In Thermodynamics of Fluids Under Flow. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04414-8_3.
Full textRuderman, Michael S. "Ideal Incompressible Fluids." In Springer Undergraduate Mathematics Series. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19297-6_5.
Full textRuderman, Michael S. "Ideal Barotropic Fluids." In Springer Undergraduate Mathematics Series. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19297-6_8.
Full textGarrett, Steven L. "Ideal Gas Laws." In Understanding Acoustics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_7.
Full textJou, David, José Casas-Vázquez, and Manuel Criado-Sancho. "Ideal Gases." In Thermodynamics of Fluids Under Flow. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04414-8_2.
Full textBerger, Melvyn S. "Vortices in Ideal Fluids." In Nonlinear Topics in the Mathematical Sciences. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0579-5_4.
Full textRuderman, Michael S. "Non-ideal Compressible Fluids." In Springer Undergraduate Mathematics Series. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19297-6_9.
Full textMassey, B. S. "The Flow of an Ideal Fluid." In Mechanics of Fluids. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3126-9_10.
Full textMassey, B. S. "The Flow of an Ideal Fluid." In Mechanics of Fluids. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7408-8_10.
Full textConference papers on the topic "Ideal fluids"
Arona, Adam, Guo-Xiang Wang, and Vish Prasad. "CLOSED-FORM SOLUTION FOR THE COMPRESSIBLE FLOW OF IDEAL GAS IN A PIPE WITH BOTH FRICTION AND HEAT TRANSFER." In 10th Thermal and Fluids Engineering Conference (TFEC). Begellhouse, 2025. https://doi.org/10.1615/tfec2025.fnd.056034.
Full textYoshimura, Hiroaki, François Gay-Balmaz, Jiachun Li, and Song Fu. "Hamilton-Pontryagin Principle for Incompressible Ideal Fluids." In RECENT PROGRESSES IN FLUID DYNAMICS RESEARCH: Proceeding of the Sixth International Conference on Fluid Mechanics. AIP, 2011. http://dx.doi.org/10.1063/1.3652002.
Full textPires, Adolfo Puime, and Pavel G. Bedrikovetsky. "Analytical Modeling of 1D n-Component Miscible Displacement of Ideal Fluids." In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/94855-ms.
Full textLeahy-Dios, A., and A. Firoozabadi. "A Unified Model for Diffusion Coefficient Prediction in Non-Ideal Petroleum Fluids." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/113021-stu.
Full textWang, Jinhong, Teng Cao, and Ricardo Martinez-Botas. "Supercritical Carbon Dioxide Shock Behaviour Near the Critical Point." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-100956.
Full textFritsche, Manuel, Philipp Epple, Karsten Hasselmann, et al. "CFD-Simulation of Centrifugal Fan Performance Characteristics Using Ideal and Real Gas Models for Air and Organic Fluids." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4815.
Full textKretzschmar, H. J., I. Stoecker, I. Jaehne, S. Herrmann, and M. Kunick. "Property Libraries for Working Fluids for Calculating Heat Cycles, Turbines, Heat Pumps, and Refrigeration Processes." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42033.
Full textGavarini, Isabella M., Alessandro Bottaro, and Frans T. M. Nieuwstadt. "Eigenvalue Sensitivity to Base Flow Variations in Hagen-Poiseuille Flow." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31050.
Full textZhu, Jinying. "Analytical Solution of Leaky Rayleigh Waves at the Interface between Elastic Solids and Ideal Fluids." In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2004. http://dx.doi.org/10.1063/1.1711625.
Full textFranco, Fermin, and Yasuhide Fukumoto. "Mathematical models for turbulent round jets based on “ideal” and “lossy” conservation of mass and energy." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4778.
Full textReports on the topic "Ideal fluids"
Passman, S. L., and D. E. Grady. Exact solutions for symmetric deformations of hollow bodies of ideal fluids with application to inertial stability. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/6006247.
Full textMorrison, P. J. Hamiltonian description of the ideal fluid. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10128748.
Full textALDRIDGE, DAVID F. Acoustic Wave Equations for a Linear Viscous Fluid and An Ideal Fluid. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/801378.
Full textPerez-Blanco, H., M. R. Patterson, and J. Braunstein. Ideal fluid properties for optimizing absorption heat pump performance. Office of Scientific and Technical Information (OSTI), 1987. http://dx.doi.org/10.2172/6611058.
Full textTruesdell, Clifford A. Applications of Some New Ideas on Irreversible Processes to Particular Fluids. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada191610.
Full textVieira, Greg, and Daniel Olsen. PR179-22206-R01 Prechamber Air and Fuel Premixing Proof of Concept. Pipeline Research Council International, Inc. (PRCI), 2024. http://dx.doi.org/10.55274/r0000099.
Full textSlawianowski, Jan J. The Two Apparently Different But Hiddenly Related Euler Achievements: Rigid Body and Ideal Fluid. Our Unifying Going Between: Affinely-Rigid Body and Affine Invariance in Physics. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-36-72.
Full textSchulz, M. Domain Walls, Branes, and Fluxes in String Theory: New Ideas on the Cosmological Constant Problem, Moduli Stabilization, and Vacuum Connectedness. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/839826.
Full textTorrijos, Ivan Dario Pinerez, Tina Puntervold, Skule Strand, Panagiotis Aslanidis, Ingebret Fjelde, and Aleksandr Mamonov. Core restoration: A guide for improved wettability assessments. University of Stavanger, 2021. http://dx.doi.org/10.31265/usps.198.
Full textRimpel, Aaron. PR-316-17200-R03 A Study of the Effects of Liquid Contamination on Seal Performance. Pipeline Research Council International, Inc. (PRCI), 2021. http://dx.doi.org/10.55274/r0012015.
Full text