Journal articles on the topic 'Ideal gas flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ideal gas flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sun, Wenjing, Wenqi Zhong, and Jingzhou Zhang. "Experimental Investigation on Turbulent Flow Deviation in a Gas-Particle Corner-Injected Flow." Processes 9, no. 12 (2021): 2202. http://dx.doi.org/10.3390/pr9122202.
Full textWANG, Moran. "Similarity of ideal gas flow at different scales." Science in China Series E 46, no. 6 (2003): 661. http://dx.doi.org/10.1360/02ye0072.
Full textCornelius, Kenneth C., and Kartik Srinivas. "Isentropic Compressible Flow for Non-Ideal Gas Models for a Venturi." Journal of Fluids Engineering 126, no. 2 (2004): 238–44. http://dx.doi.org/10.1115/1.1677499.
Full textDias, Frédéric, Alan R. Elcrat, and Lloyd N. Trefethen. "Ideal jet flow in two dimensions." Journal of Fluid Mechanics 185 (December 1987): 275–88. http://dx.doi.org/10.1017/s0022112087003173.
Full textZhitnikov, V. P., and A. G. Terent'ev. "Axisymmetric flow of ideal fluid past a gas bubble." Fluid Dynamics 28, no. 5 (1994): 667–71. http://dx.doi.org/10.1007/bf01050050.
Full textHołyst, Robert, Paweł J. Żuk, Anna Maciołek, Karol Makuch, and Konrad Giżyński. "Direction of Spontaneous Processes in Non-Equilibrium Systems with Movable/Permeable Internal Walls." Entropy 26, no. 8 (2024): 713. http://dx.doi.org/10.3390/e26080713.
Full textAlmeida, Alcino R. "A Model To Calculate the Theoretical Critical Flow Rate Through Venturi Gas Lift Valves." SPE Journal 16, no. 01 (2010): 134–47. http://dx.doi.org/10.2118/126184-pa.
Full textAnand, R. K. "Jump relations across a shock in non-ideal gas flow." Astrophysics and Space Science 342, no. 2 (2012): 377–88. http://dx.doi.org/10.1007/s10509-012-1175-6.
Full textSirignano, William A. "Compressible flow at high pressure with linear equation of state." Journal of Fluid Mechanics 843 (March 21, 2018): 244–92. http://dx.doi.org/10.1017/jfm.2018.166.
Full textElmar Agayev, Elmar Agayev. "THE STUDY OF LAMINAR AND TURBULENT FLOW IN TURBINE TYPE OF FLOW METERS." PIRETC-Proceeding of The International Research Education & Training Centre 27, no. 06 (2023): 140–49. http://dx.doi.org/10.36962/piretc27062023-140.
Full textSantoso, Arif Dwi. "METODE PERHITUNGAN MASSA GAS CO2 YANG DISERAP FOTOBIOREAKTOR DENGAN PERSAMAAN GAS IDEAL." Jurnal Teknologi Lingkungan 11, no. 2 (2016): 239. http://dx.doi.org/10.29122/jtl.v11i2.1208.
Full textLiu, Zhan, Wenguang Jia, Longhui Liang, and Zhenya Duan. "Analysis of Pressure Pulsation Influence on Compressed Natural Gas (CNG) Compressor Performance for Ideal and Real Gas Models." Applied Sciences 9, no. 5 (2019): 946. http://dx.doi.org/10.3390/app9050946.
Full textTenenev, V. A., and M. R. Koroleva. "Modeling of the Gas Dynamic Processes with Different Equations of State." Intellekt. Sist. Proizv. 21, no. 3 (2023): 115–23. http://dx.doi.org/10.22213/2410-9304-2023-3-115-123.
Full textHe, Nan, Xiaolong Chi, Chi Feng, Manfei Lu, Li Zhang, and Jingming Dong. "Numerical Investigation on the Effect of Wet Steam and Ideal Gas Models for Steam Ejector Driven by Ship Waste Heat." Applied Sciences 13, no. 22 (2023): 12516. http://dx.doi.org/10.3390/app132212516.
Full textMapleson, W. W. "The theoretical ideal fresh‐gas flow sequence at the start of low‐flow anaesthesia." Anaesthesia 53, no. 3 (1998): 264–72. http://dx.doi.org/10.1046/j.1365-2044.1998.00310.x.
Full textRen, Jie, Song Fu, and Rene Pecnik. "Linear instability of Poiseuille flows with highly non-ideal fluids." Journal of Fluid Mechanics 859 (November 16, 2018): 89–125. http://dx.doi.org/10.1017/jfm.2018.815.
Full textZyryanov, I. V., Y. A. Boyko, and D. M. Kuchinsky. "Outflow of real gas from the nozzle." Transactions of the Krylov State Research Centre S-I, no. 1 (2021): 349–51. http://dx.doi.org/10.24937/2542-2324-2021-1-s-i-349-351.
Full textAnand, R. K. "Jump relations for magnetohydrodynamic shock waves in non-ideal gas flow." Astrophysics and Space Science 343, no. 2 (2012): 713–33. http://dx.doi.org/10.1007/s10509-012-1279-z.
Full textLi, Shu Xun, Xiao Gang Xu, Ying Zhe Hou, and Que Li. "Numerical Analysis of Flow Field and Performance Optimization of Axial-Flow Pressure Reducing Valve." Applied Mechanics and Materials 271-272 (December 2012): 1362–65. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.1362.
Full textWada, Tatsuaki, and Antonio Maria Scarfone. "Onsager’s Non-Equilibrium Thermodynamics as Gradient Flow in Information Geometry." Entropy 27, no. 7 (2025): 710. https://doi.org/10.3390/e27070710.
Full textXu, Hengjie, Pengyun Song, Wenyuan Mao, and Qiangguo Deng. "The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234, no. 4 (2019): 554–66. http://dx.doi.org/10.1177/1350650119891563.
Full textHanimann, Lucian, Luca Mangani, Ernesto Casartelli, Damian Vogt, and Marwan Darwish. "Real Gas Models in Coupled Algorithms Numerical Recipes and Thermophysical Relations." International Journal of Turbomachinery, Propulsion and Power 5, no. 3 (2020): 20. http://dx.doi.org/10.3390/ijtpp5030020.
Full textAlizada, Gunel. "Gas-hydrodynamics of gas-liquid flow in the reservoir-well system." All Sciences Abstracts 1, no. 2 (2023): 13–15. http://dx.doi.org/10.59287/as-abstracts.1205.
Full textTang, Jing, Wen Chuan Wang, Xiang Jun Fang, Shi Long Liu, and Wen Long Sun. "Investigations of Energy Separation Effect in Vortex Tube for Real Gases." Advanced Materials Research 724-725 (August 2013): 1293–300. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.1293.
Full textHyhlík, Tomáš. "Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation." EPJ Web of Conferences 180 (2018): 02037. http://dx.doi.org/10.1051/epjconf/201818002037.
Full textYang, Jaw-Yen, and Yu-Hsin Shi. "A kinetic beam scheme for ideal quantum gas dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2069 (2006): 1553–72. http://dx.doi.org/10.1098/rspa.2005.1618.
Full textHoffren, J., T. Talonpoika, J. Larjola, and T. Siikonen. "Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring." Journal of Engineering for Gas Turbines and Power 124, no. 2 (2002): 395–403. http://dx.doi.org/10.1115/1.1423320.
Full textAllahverdiyev, E., and I. Mezník. "ALGORITHM FOR SELECTING A FLOW METER WITH OPTIMAL PARAMETERS." Danish scientific journal, no. 61 (June 24, 2022): 17–20. https://doi.org/10.5281/zenodo.6782540.
Full textEvstigneev, Nikolay M., and Oleg I. Ryabkov. "Nonlinear dynamics for the 3D ideal viscous gas flow over the cylinder." Journal of Physics: Conference Series 2090, no. 1 (2021): 012045. http://dx.doi.org/10.1088/1742-6596/2090/1/012045.
Full textRubina, L. I., and O. N. Ul’yanov. "On the Problem of the Flow of an Ideal Gas around Bodies." Proceedings of the Steklov Institute of Mathematics 301, S1 (2018): 145–54. http://dx.doi.org/10.1134/s0081543818050127.
Full textCriado-Sancho, M., D. Jou, and J. Casas-Vázquez. "Temperature in ideal gas mixtures in Couette flow: A maximum-entropy approach." Physics Letters A 372, no. 13 (2008): 2172–75. http://dx.doi.org/10.1016/j.physleta.2007.10.094.
Full textSingh, K. S., and R. Prasad. "A self-similar flow behind spherical shock wave in non-ideal gas." Astrophysics and Space Science 132, no. 2 (1987): 257–62. http://dx.doi.org/10.1007/bf00641757.
Full textNath, G., and A. K. Sinha. "Magnetogasdynamic Shock Waves in Non-ideal Gas Under Gravitational Field-Isothermal Flow." International Journal of Applied and Computational Mathematics 3, no. 1 (2015): 225–38. http://dx.doi.org/10.1007/s40819-015-0101-3.
Full textYagudin, S. V. "Supersonic ideal-gas flow of in the throat region of a nozzle." Fluid Dynamics 31, no. 3 (1996): 448–53. http://dx.doi.org/10.1007/bf02030229.
Full textRebhan, E. "An infinity of conservation laws for highly symmetric nonisentropic ideal gas flow." Physica D: Nonlinear Phenomena 34, no. 1-2 (1989): 289–94. http://dx.doi.org/10.1016/0167-2789(89)90241-8.
Full textRyzhkov, Sergei V., and Victor V. Kuzenov. "Analysis of the ideal gas flow over body of basic geometrical shape." International Journal of Heat and Mass Transfer 132 (April 2019): 587–92. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.12.032.
Full textYagudin, S. V. "Choking of ideal-gas flow in convergent nozzles and integral nozzle characteristics." Fluid Dynamics 29, no. 6 (1994): 862–68. http://dx.doi.org/10.1007/bf02040796.
Full textMoore, D. W., and D. I. Pullin. "The vortex pair in a compressible ideal gas." Fluid Dynamics Research 3, no. 1-4 (1988): 377–80. http://dx.doi.org/10.1016/0169-5983(88)90095-0.
Full textWang, Yi, Bo Yu, and Ye Wang. "Acceleration of Gas Reservoir Simulation Using Proper Orthogonal Decomposition." Geofluids 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/8482352.
Full textZheng, H. T., L. Cai, Y. J. Li, and Z. M. Li. "Computational fluid dynamics simulation of the supersonic steam ejector. Part 1: Comparative study of different equations of state." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, no. 3 (2011): 709–14. http://dx.doi.org/10.1177/0954406211415777.
Full textChauhan, Astha, and Rajan Arora. "Similarity Solutions of Strong Shock Waves for Isothermal Flow in an Ideal Gas." International Journal of Mathematical, Engineering and Management Sciences 4, no. 5 (2019): 1094–107. http://dx.doi.org/10.33889/ijmems.2019.4.5-087.
Full textVitale, Salvatore, Tim A. Albring, Matteo Pini, Nicolas R. Gauger, and Piero Colonna. "Fully turbulent discrete adjoint solver for non-ideal compressible flow applications." Journal of the Global Power and Propulsion Society 1 (November 22, 2017): Z1FVOI. http://dx.doi.org/10.22261/jgpps.z1fvoi.
Full textEl-Behery, S. M., W. A. El-Askary, M. H. Hamed, and K. A. Ibrahim. "Numerical and experimental study of heat transfer in gas-solid flow: Particle cooling." International Review of Applied Sciences and Engineering 3, no. 1 (2012): 21–29. http://dx.doi.org/10.1556/irase.3.2012.1.3.
Full textBober, W., and W. L. Chow. "Nonideal Gas Effects for the Venturi Meter." Journal of Fluids Engineering 113, no. 2 (1991): 301–4. http://dx.doi.org/10.1115/1.2909496.
Full textYachmenev, P. S., V. V. Fedyanin, and I. S. Vavilov. "DEVELOPMENT OF A THRUST MEASUREMENT STAND BASED ON THE AERODYNAMIC METHOD FOR ELECTRIC THRUSTERS OF SMALL SPACECRAFT." DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, no. 2 (2023): 51–57. http://dx.doi.org/10.25206/2310-9793-2023-11-2-51-57.
Full textSun, Zhiqiang, Shuai Shao, and Hui Gong. "Gas–liquid Flow Pattern Recognition Based on Wavelet Packet Energy Entropy of Vortex-induced Pressure Fluctuation." Measurement Science Review 13, no. 2 (2013): 83–88. http://dx.doi.org/10.2478/msr-2013-0016.
Full textAl-Musafir, Rahman Shnain Abdulmohsin. "Axial Dispersion and Back-mixing of Gas Phase in Pebble Bed Reactor." Tikrit Journal of Engineering Sciences 18, no. 3 (2011): 1–12. http://dx.doi.org/10.25130/tjes.18.3.01.
Full textTan, Jinglu, Kim A. Stelson, and Kevin A. Janni. "Compressible-Flow Modeling With Pseudo Bond Graphs." Journal of Dynamic Systems, Measurement, and Control 116, no. 2 (1994): 272–80. http://dx.doi.org/10.1115/1.2899220.
Full textAfonin, Gennadiy I., and Anton G. Afonin. "The use of the principle of least action in a study of ideal gas flow in subsonic parts of a nozzle." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 94 (2025): 79–92. https://doi.org/10.17223/19988621/94/7.
Full textWei, Jian Zheng, Rui Qiang Ma, Hui Feng Tan, and Xing Wen Du. "Simulation for Gas-Membrane Interaction of Folded Membrane Tubes during Inflation." Advanced Materials Research 594-597 (November 2012): 2627–31. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2627.
Full text