Academic literature on the topic 'Identification of an autoregressive model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Identification of an autoregressive model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Identification of an autoregressive model"
Sarichev, Aleksandr, and Bogdan Perviy. "AUTOREGRESSION MODELS OF SPACE OBJECTS MOVEMENT REPRESENTED BY TLE ELEMENTS." System technologies 2, no. 127 (February 24, 2020): 103–16. http://dx.doi.org/10.34185/1562-9945-2-127-2020-08.
Full textGilmour, Timothy P., Thyagarajan Subramanian, Constantino Lagoa, and W. Kenneth Jenkins. "Multiscale Autoregressive Identification of Neuroelectrophysiological Systems." Computational and Mathematical Methods in Medicine 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/580795.
Full textGoryainov, A. V., V. B. Goryainov, and W. M. Khing. "Robust Identification of an Exponential Autoregressive Model." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (91) (August 2020): 42–57. http://dx.doi.org/10.18698/1812-3368-2020-4-42-57.
Full textUrsu, Eugen, and Kamil Feridun Turkman. "Periodic autoregressive model identification using genetic algorithms." Journal of Time Series Analysis 33, no. 3 (January 19, 2012): 398–405. http://dx.doi.org/10.1111/j.1467-9892.2011.00772.x.
Full textAndrews, Beth, and Richard A. Davis. "Model identification for infinite variance autoregressive processes." Journal of Econometrics 172, no. 2 (February 2013): 222–34. http://dx.doi.org/10.1016/j.jeconom.2012.08.009.
Full textLiu, Jikui, Liyan Yin, Chenguang He, Bo Wen, Xi Hong, and Ye Li. "A Multiscale Autoregressive Model-Based Electrocardiogram Identification Method." IEEE Access 6 (2018): 18251–63. http://dx.doi.org/10.1109/access.2018.2820684.
Full textAndo, Shigeru. "Exact FFT-based identification of autoregressive (AR) model." Journal of the Acoustical Society of America 146, no. 4 (October 2019): 2846. http://dx.doi.org/10.1121/1.5136873.
Full textLiu, Xuan, and Jianbao Chen. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances." Mathematics 9, no. 12 (June 21, 2021): 1448. http://dx.doi.org/10.3390/math9121448.
Full textXiuli, Du, and Wang Fengquan. "Modal identification based on Gaussian continuous time autoregressive moving average model." Journal of Sound and Vibration 329, no. 20 (September 2010): 4294–312. http://dx.doi.org/10.1016/j.jsv.2010.04.018.
Full textWu, Ping, ChunJie Yang, and ZhiHuan Song. "Recursive Subspace Model Identification Based On Vector Autoregressive Modelling." IFAC Proceedings Volumes 41, no. 2 (2008): 8872–77. http://dx.doi.org/10.3182/20080706-5-kr-1001.01499.
Full textDissertations / Theses on the topic "Identification of an autoregressive model"
Akgun, Burcin. "Identification Of Periodic Autoregressive Moving Average Models." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1083682/index.pdf.
Full textPEREIRA, ANGELO SERGIO MILFONT. "IDENTIFICATION MECHANISMS OF SPURIOUS DIVISIONS IN THRESHOLD AUTOREGRESSIVE MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3191@1.
Full textThe goal of this dissertation is to propose a test mechanism to evaluate the results obtained from the TS-TARX modeling procedure.The main motivation is to find a solution to a usual problem related to TS-TARX modeling: spurious models are generated in the process of dividing the space state of the independent variables.The model is a heuristics based on regression tree analysis, as discussed by Brieman -3, 1984-. The model used to estimate the parameters of the time series is a TARX -Threshold Autoregressive with eXternal variables-.The main idea is to find thresholds that split the independent variable space into regimes which can be described by a local linear model. In this process, the recursive least square regression model is preserved. From the combination of regression tree analysis and recursive least square regression techniques, the model becomes TS-TARX -Tree Structured - Threshold Autoregression with eXternal variables-.The works initiated by Aranha in -1, 2001- will be extended. In his works, from a given data base, one efficient algorithm generates a decision tree based on splitting rules, and the corresponding regression equations for each one of the regimes found.Spurious models may be generated either from its building procedure, or from the fact that a procedure to compare the resulting models had not been proposed.To fill this gap, a methodology will be proposed. In accordance with the statistical tests proposed by Chow in -5, 196-, a series of consecutive tests will be performed.The Chow tests will provide the tools to identify spurious models and to reduce the number of regimes found. The complexity of the final model, and the number of parameters to estimate are therefore reduced by the identification and elimination of redundancies, without bringing risks to the TS-TARX model predictive power.This work is concluded with illustrative examples and some applications to real data that will help the readers understanding.
Braun, Robin [Verfasser]. "Three Essays on Identification in Structural Vector Autoregressive Models / Robin Braun." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1191693473/34.
Full textBertsche, Dominik [Verfasser]. "Three Essays on Identification and Dimension Reduction in Vector Autoregressive Models / Dominik Bertsche." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1209879778/34.
Full textAvventi, Enrico, Anders Lindquist, and Bo Wahlberg. "ARMA Identification of Graphical Models." KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39065.
Full textUpdated from "Preprint" to "Article" QC 20130627
Yang, Kai. "Essays on Multivariate and Simultaneous Equations Spatial Autoregressive Models." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461277549.
Full textBruns, Martin [Verfasser]. "Essays in Empirical Macroeconomics: Identification in Vector Autoregressive Models and Robust Inference in Early Warning Systems / Martin Bruns." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/119064522X/34.
Full textOgbonna, Emmanuel. "A multi-parameter empirical model for mesophilic anaerobic digestion." Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/17467.
Full textUhrin, Gábor B. [Verfasser], Martin [Akademischer Betreuer] Wagner, and Walter [Gutachter] Krämer. "In search of Q: results on identification in structural vector autoregressive models / Gábor B. Uhrin ; Gutachter: Walter Krämer ; Betreuer: Martin Wagner." Dortmund : Universitätsbibliothek Dortmund, 2017. http://d-nb.info/1138115134/34.
Full textÚriz-Jáuregui, Fermín. "Mise en place d'une méthodologie pour l'identification de modèles d'extrapolation de température : application aux équipements de nacelles de turboréacteurs." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0381/document.
Full textAirbus must ensure that for all flight conditions that a given aircraft could face, the temperature of each powerplant system must be less than the corresponding critical temperature. In order to validate the temperature of each device in the flight envelope, tests at the border should be done. Airbus produces for each aircraft component many trials, either in flight or ground. However, all flight tests are faced with climatic and operational constraints which do not permit exploring the whole area. That's why Airbus needs to develop methods of extrapolation of temperature in order to predict the thermal behavior of materials and equipments in the worst conditions. The proposed techniques are based on the system identification theory which consists on heuristically determining an analytical model using physical insights and measurements. More precisely, this paper validates ARX models as a tool for the identification of the system's temperature. The models and techniques are studied, first, from a numerical simulation point of view and second, based on laboratory representative tests. The proposed techniques allow predicting the temperature of aircraft components at different conditions
Books on the topic "Identification of an autoregressive model"
Brüggemann, Ralf. Model Reduction Methods for Vector Autoregressive Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17029-4.
Full textBabeshko, Lyudmila, and Irina Orlova. Econometrics and econometric modeling in Excel and R. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1079837.
Full textEngle, R. F. Forecasting transaction rates: The autoregressive conditional duration model. Cambridge, MA: National Bureau of Economic Research, 1994.
Find full textHellendoorn, Hans, and Dimiter Driankov, eds. Fuzzy Model Identification. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7.
Full textChoi, ByoungSeon. ARMA Model Identification. New York, NY: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4613-9745-8.
Full textGoodwin, Graham, ed. Model Identification and Adaptive Control. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0711-8.
Full textAbonyi, János. Fuzzy Model Identification for Control. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0027-7.
Full textMocan, H. Naci. Business cycles and fertility dynamics in the U.S.: A vector-autoregressive model. Cambridge, MA (1050 Massachusetts Avenue, Cambridge, MA 02138): National Bureau of Economic Research, 1989.
Find full textBillings, S. A. Model identification and assessment based on model predicted output. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1998.
Find full textBook chapters on the topic "Identification of an autoregressive model"
Xia, Qiang, and Heung Wong. "Identification of Threshold Autoregressive Moving Average Models." In Advances in Time Series Methods and Applications, 195–214. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6568-7_9.
Full textHoshiya, Masaru, and Osamu Maruyama. "Identification of Autoregressive Process Model by the Extended Kalman Filter." In Lecture Notes in Engineering, 173–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84362-4_16.
Full textMartinez-Vargas, Juan David, Jose David Lopez, Felipe Rendón-Castrillón, Gregor Strobbe, Pieter van Mierlo, German Castellanos-Dominguez, and Diana Ovalle-Martínez. "Identification of Nonstationary Brain Networks Using Time-Variant Autoregressive Models." In Natural and Artificial Computation for Biomedicine and Neuroscience, 426–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59740-9_42.
Full textKraemer, P., and Claus Peter Fritzen. "Sensor Fault Identification Using Autoregressive Models and the Mutual Information Concept." In Damage Assessment of Structures VII, 387–92. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-444-8.387.
Full textBovbel, Eugeny E., Igor E. Kheidorov, and Michael E. Kotlyar. "Speaker Identification Using Autoregressive Hidden Markov Models and Adaptive Vector Quantisation." In Text, Speech and Dialogue, 207–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45323-7_35.
Full textHorváth, Lajos, and Piotr Kokoszka. "Functional autoregressive model." In Springer Series in Statistics, 235–52. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3655-3_13.
Full textShekhar, Shashi, and Hui Xiong. "Simultaneous Autoregressive Model (SAR)." In Encyclopedia of GIS, 1056. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1217.
Full textNikolov, Ventsislav. "Autoregressive Model Order Determination." In Advances in Intelligent Systems and Computing, 577–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01057-7_45.
Full textRoy, Radhika Ranjan. "Autoregressive Group Mobility Model." In Handbook of Mobile Ad Hoc Networks for Mobility Models, 791–806. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6050-4_32.
Full textPriestley, M. B. "Autoregressive Model Fitting and Windows." In Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, 63–78. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0866-9_5.
Full textConference papers on the topic "Identification of an autoregressive model"
Kim, Sung-Ho, and Namgil Lee. "A Bayes Shrinkage Estimation Method for Vector Autoregressive Models." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.769-065.
Full textChoi, Jaewon, Mohsen Nakhaeinejad, and Michael D. Bryant. "System Identification of Small Loudspeakers Using ARMA Model." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4221.
Full textAngarita, John, Daniel Doyle, Gustavo Gargioni, and Jonathan Black. "Input Excitation Analysis for Black-Box Quadrotor Model System Identification." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3159.
Full textZhao, Sijia, Ke Liu, and Xin Deng. "EEG Identification Based on Brain Functional Network and Autoregressive Model." In 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2020. http://dx.doi.org/10.1109/ddcls49620.2020.9275241.
Full textKim, Sung-Ho, and Yongtae Kim. "Structure Learning of Multivariate Autoregressive Models based on Marginal Models." In Artificial Intelligence and Applications / Modelling, Identification, and Control. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.718-067.
Full textSoma, Hitoshi, and Kaneo Hiramatsu. "Identification of Vehicle Dynamics Under Lateral Wind Disturbance Using Autoregressive Model." In International Pacific Conference On Automotive Engineering. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931894.
Full textVeloz, A., R. Salas, H. Allende-Cid, and H. Allende. "SIFAR: Self-Identification of Lags of an Autoregressive TSK-based Model." In 2012 IEEE 42nd International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2012. http://dx.doi.org/10.1109/ismvl.2012.42.
Full textLiu, Lilan, Hongzhao Liu, Ziying Wu, Daning Yuan, and Pengfei Li. "Modal Parameter Identification of Time-Varying Systems Using the Time-Varying Multivariate Autoregressive Model." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84118.
Full textTiedemann, Kenneth H. "Modelling Residential and Commercial Demand for Electricity Using Autoregressive Distributed Lag Models." In Modelling, Identification and Control / 827: Computational Intelligence. Calgary,AB,Canada: ACTAPRESS, 2015. http://dx.doi.org/10.2316/p.2015.826-013.
Full textFirat, Umut, Seref Naci Engin, Murat Saraclar, and Aysin Baytan Ertuzun. "Wind Speed Forecasting Based on Second Order Blind Identification and Autoregressive Model." In 2010 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2010. http://dx.doi.org/10.1109/icmla.2010.106.
Full textReports on the topic "Identification of an autoregressive model"
Engle, Robert, and Jeffrey Russell. Forecasting Transaction Rates: The Autoregressive Conditional Duration Model. Cambridge, MA: National Bureau of Economic Research, December 1994. http://dx.doi.org/10.3386/w4966.
Full textRosser, J. Barkley, and Richard G. Sheehan. A Vector Autoregressive Model of Saudi Arabian Inflation. Federal Reserve Bank of St. Louis, 1985. http://dx.doi.org/10.20955/wp.1985.011.
Full textWahba, Grace. Multivariate Model Building and Model Identification. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada221619.
Full textAhmed, Ehsan, J. Barkley Rosser, and Richard G. Sheehan. A Model of Global Aggregate Supply and Demand Using Vector Autoregressive Techniques. Federal Reserve Bank of St. Louis, 1986. http://dx.doi.org/10.20955/wp.1986.004.
Full textMocan, Naci. Business Cycles and Fertility Dynamics in the U.S.: A Vector-Autoregressive Model. Cambridge, MA: National Bureau of Economic Research, November 1989. http://dx.doi.org/10.3386/w3177.
Full textDewald, Lee S., Peter A. Lewis, and Ed McKenzie. A Bivariate First Order Autoregressive Time Series Model in Exponential Variables (BEAR(1)). Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada177055.
Full textYamada, Tadashi. The Crime Rate and the Condition of the Labor Market: A Vector Autoregressive Model. Cambridge, MA: National Bureau of Economic Research, December 1985. http://dx.doi.org/10.3386/w1782.
Full textCyganski, David, R. F. Vaz, and J. A. Orr. Model-Based 3-D Object Identification. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada344653.
Full textRed-Horse, J. R. Structural system identification: Structural dynamics model validation. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/469145.
Full textAlberti, Jose. Modeling and Model Identification of Autonomous Underwater Vehicles. Fort Belvoir, VA: Defense Technical Information Center, June 2015. http://dx.doi.org/10.21236/ad1009363.
Full text