Dissertations / Theses on the topic 'Identification of an autoregressive model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Identification of an autoregressive model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Akgun, Burcin. "Identification Of Periodic Autoregressive Moving Average Models." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1083682/index.pdf.
Full textPEREIRA, ANGELO SERGIO MILFONT. "IDENTIFICATION MECHANISMS OF SPURIOUS DIVISIONS IN THRESHOLD AUTOREGRESSIVE MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3191@1.
Full textThe goal of this dissertation is to propose a test mechanism to evaluate the results obtained from the TS-TARX modeling procedure.The main motivation is to find a solution to a usual problem related to TS-TARX modeling: spurious models are generated in the process of dividing the space state of the independent variables.The model is a heuristics based on regression tree analysis, as discussed by Brieman -3, 1984-. The model used to estimate the parameters of the time series is a TARX -Threshold Autoregressive with eXternal variables-.The main idea is to find thresholds that split the independent variable space into regimes which can be described by a local linear model. In this process, the recursive least square regression model is preserved. From the combination of regression tree analysis and recursive least square regression techniques, the model becomes TS-TARX -Tree Structured - Threshold Autoregression with eXternal variables-.The works initiated by Aranha in -1, 2001- will be extended. In his works, from a given data base, one efficient algorithm generates a decision tree based on splitting rules, and the corresponding regression equations for each one of the regimes found.Spurious models may be generated either from its building procedure, or from the fact that a procedure to compare the resulting models had not been proposed.To fill this gap, a methodology will be proposed. In accordance with the statistical tests proposed by Chow in -5, 196-, a series of consecutive tests will be performed.The Chow tests will provide the tools to identify spurious models and to reduce the number of regimes found. The complexity of the final model, and the number of parameters to estimate are therefore reduced by the identification and elimination of redundancies, without bringing risks to the TS-TARX model predictive power.This work is concluded with illustrative examples and some applications to real data that will help the readers understanding.
Braun, Robin [Verfasser]. "Three Essays on Identification in Structural Vector Autoregressive Models / Robin Braun." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1191693473/34.
Full textBertsche, Dominik [Verfasser]. "Three Essays on Identification and Dimension Reduction in Vector Autoregressive Models / Dominik Bertsche." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1209879778/34.
Full textAvventi, Enrico, Anders Lindquist, and Bo Wahlberg. "ARMA Identification of Graphical Models." KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39065.
Full textUpdated from "Preprint" to "Article" QC 20130627
Yang, Kai. "Essays on Multivariate and Simultaneous Equations Spatial Autoregressive Models." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461277549.
Full textBruns, Martin [Verfasser]. "Essays in Empirical Macroeconomics: Identification in Vector Autoregressive Models and Robust Inference in Early Warning Systems / Martin Bruns." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/119064522X/34.
Full textOgbonna, Emmanuel. "A multi-parameter empirical model for mesophilic anaerobic digestion." Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/17467.
Full textUhrin, Gábor B. [Verfasser], Martin [Akademischer Betreuer] Wagner, and Walter [Gutachter] Krämer. "In search of Q: results on identification in structural vector autoregressive models / Gábor B. Uhrin ; Gutachter: Walter Krämer ; Betreuer: Martin Wagner." Dortmund : Universitätsbibliothek Dortmund, 2017. http://d-nb.info/1138115134/34.
Full textÚriz-Jáuregui, Fermín. "Mise en place d'une méthodologie pour l'identification de modèles d'extrapolation de température : application aux équipements de nacelles de turboréacteurs." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0381/document.
Full textAirbus must ensure that for all flight conditions that a given aircraft could face, the temperature of each powerplant system must be less than the corresponding critical temperature. In order to validate the temperature of each device in the flight envelope, tests at the border should be done. Airbus produces for each aircraft component many trials, either in flight or ground. However, all flight tests are faced with climatic and operational constraints which do not permit exploring the whole area. That's why Airbus needs to develop methods of extrapolation of temperature in order to predict the thermal behavior of materials and equipments in the worst conditions. The proposed techniques are based on the system identification theory which consists on heuristically determining an analytical model using physical insights and measurements. More precisely, this paper validates ARX models as a tool for the identification of the system's temperature. The models and techniques are studied, first, from a numerical simulation point of view and second, based on laboratory representative tests. The proposed techniques allow predicting the temperature of aircraft components at different conditions
Auber, Romain. "Contribution à la reconnaissance d'activités à partir d'un objet connecté." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC242.
Full textThis manuscript deals with the recognition of activities from accelerometric data. The device used to collect the accelerometer data is eTact, a device developed by Bodycap. Several solutions are proposed to optimize the autonomy of the connected object. These solutions are implemented and compared on different data sets. The originality of one of these solutions is to binarize the data of the accelerometer before transferring them to an external platform where they are analyzed. The use of binary data induces the loss of a lot of information, however it is shown in this manuscript that it is possible to estimate, among other things, the parameters of an Auto Regressive model of a time series from the binary information on this series. In this respect, an identification algorithm is proposed and analyzed
Claudino, Joana Filipa Caetano. "Intelligent system for time series pattern identification and prediction." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/21036.
Full textOs crescentes volumes de dados representam uma fonte de informação potencialmente valiosa para as empresas, mas também implicam desafios nunca antes enfrentados. Apesar da sua complexidade intrínseca, as séries temporais são um tipo de dados notavelmente relevantes para o contexto empresarial, especialmente para tarefas preditivas. Os modelos Autorregressivos Integrados de Médias Móveis (ARIMA), têm sido a abordagem mais popular para tais tarefas, porém, não estão preparados para lidar com as cada vez mais comuns séries temporais de maior dimensão ou granularidade. Assim, novas tendências de investigação envolvem a aplicação de modelos orientados a dados, como Redes Neuronais Recorrentes (RNNs), à previsão. Dada a dificuldade da previsão de séries temporais e a necessidade de ferramentas aprimoradas, o objetivo deste projeto foi a implementação dos modelos clássicos ARIMA e as arquiteturas RNN mais proeminentes, de forma automática, e o posterior uso desses modelos como base para o desenvolvimento de um sistema modular capaz de apoiar o utilizador em todo o processo de previsão. Design science research foi a abordagem metodológica adotada para alcançar os objetivos propostos e envolveu, para além da identificação dos objetivos, uma revisão aprofundada da literatura que viria a servir de suporte teórico à etapa seguinte, designadamente a execução do projeto e findou com a avaliação meticulosa do artefacto produzido. No geral todos os objetivos propostos foram alcançados, sendo os principais contributos do projeto o próprio sistema desenvolvido devido à sua utilidade prática e ainda algumas evidências empíricas que apoiam a aplicabilidade das RNNs à previsão de séries temporais.
The current growing volumes of data present a source of potentially valuable information for companies, but they also pose new challenges never faced before. Despite their intrinsic complexity, time series are a notably relevant kind of data in the entrepreneurial context, especially regarding prediction tasks. The Autoregressive Integrated Moving Average (ARIMA) models have been the most popular approach for such tasks, but they do not scale well to bigger and more granular time series which are becoming increasingly common. Hence, newer research trends involve the application of data-driven models, such as Recurrent Neural Networks (RNNs), to forecasting. Therefore, given the difficulty of time series prediction and the need for improved tools, the purpose of this project was to implement the classical ARIMA models and the most prominent RNN architectures in an automated fashion and posteriorly to use such models as foundation for the development of a modular system capable of supporting the common user along the entire forecasting process. Design science research was the adopted methodology to achieve the proposed goals and it comprised the activities of goal definition, followed by a thorough literature review aimed at providing the theoretical background necessary to the subsequent step that involved the actual project execution and, finally, the careful evaluation of the produced artifact. In general, each the established goals were accomplished, and the main contributions of the project were the developed system itself due to its practical usefulness along with some empirical evidence supporting the suitability of RNNs to time series forecasting.
info:eu-repo/semantics/publishedVersion
Fischer, Manfred M., Florian Huber, Michael Pfarrhofer, and Petra Staufer-Steinnocher. "The dynamic impact of monetary policy on regional housing prices in the United States." WU Vienna University of Economics and Business, 2018. http://epub.wu.ac.at/6658/1/2018%2D11%2D16_housing_favar_(002).pdf.
Full textSeries: Working Papers in Regional Science
Romano, Donato. "Machine Learning algorithms for predictive diagnostics applied to automatic machines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22319/.
Full textYeung, Miu Han Iris. "Continuous time threshold autoregressive model." Thesis, University of Kent, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328661.
Full textSellner, Richard, Manfred M. Fischer, and Matthias Koch. "A Spatial Autoregressive Poisson Gravity Model." Wiley-Blackwell, 2013. http://dx.doi.org/10.1111/gean.12007.
Full textKriwoluzky, Alexander. "Matching DSGE models to data with applications to fiscal and robust monetary policy." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2009. http://dx.doi.org/10.18452/16052.
Full textThis thesis is concerned with three questions: first, how can the effects macroeconomic policy has on the economy in general be estimated? Second, what are the effects of a pre-announced increase in government expenditures? Third, how should monetary policy be conducted, if the policymaker faces uncertainty about the economic environment. In the first chapter I suggest to estimate the effects of an exogenous disturbance on the economy by considering the parameter distributions of a Vector Autoregression (VAR) model and a Dynamic Stochastic General Equilibrium (DSGE) model jointly. This allows to resolve the major issue a researcher has to deal with when working with a VAR model and a DSGE model: the identification of the VAR model and the potential misspecification of the DSGE model. The second chapter applies the methodology presented in the preceding chapter to investigate the effects of a pre-announced change in government expenditure on private consumption and real wages. The shock is identified by exploiting its pre-announced nature, i.e. different signs of the responses in endogenous variables during the announcement and after the realization of the shock. Private consumption is found to respond negatively during the announcement period and positively after the realization. The reaction of real wages is positive on impact and positive for two quarters after the realization. In the last chapter ''Optimal Policy Under Model Uncertainty: A Structural-Bayesian Estimation Approach'' I investigate jointly with Christian Stoltenberg how policy should optimally be conducted when the policymaker is faced with uncertainty about the economic environment. The standard procedure is to specify a prior over the parameter space ignoring the status of some sub-models. We propose a procedure that ensures that the specified set of sub-models is not discarded too easily. We find that optimal policy based on our procedure leads to welfare gains compared to the standard practice.
Brüggemann, Ralf. "Model reduction methods for vector autoregressive processes /." Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0818/2003067373-d.html.
Full textNur, Darfiana. "Parameter estimation of smooth threshold autoregressive models." Curtin University of Technology, School of Mathematics and Statistics, 1998. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=10781.
Full textRastenė, Irma. "Testing and estimating changed segment in autoregressive model." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110628_134429-88914.
Full textDisertacijoje nagrinėjamas pirmos eilės autoregresinio modelio pasikeitusio segmento testavimo ir vertinimo uždavinys. Aprašomo modelio epideminio pasikeitimo pradžia ir ilgis nėra žinomi. Pasiūlyti kriterijai pasikeitusio segmento testavimui, kurie pagrįsti modelio paklaidų įvertinių dalinių sumų ir modelio parametro dalinių įvertinių laužčių procesais. Šiems procesams gautos ribinės teoremos Hiolderio erdvėse. Nurodomas testų statistikų ribinis elgesys esant teisingai nulinei ir alternatyviajai hipotezėms. Iš empirinio kriterijų galios tyrimo rezultatų matyti, kad pasiūlytų testų galia didžiausia aptinkant pasikeitimus iš stacionarios būklės į nestacionarią arba esant artimoms vienetui modelio parametro reikšmėms. Taip pat įrodoma, kad mažiausių kvadratų metodu gauti pasikeitusio segmento pradžios ir ilgio įverčiai bei autoregresinio modelio su pasikeitusiu segmentu parametrų įverčiai yra suderintieji bei pateikiamas jų konvergavimo greitis.
Yano, Marcus Omori. "Extrapolation of autoregressive model for damage progression analysis /." Ilha Solteira, 2019. http://hdl.handle.net/11449/182287.
Full textResumo: O principal objetivo deste trabalho é usar métodos de extrapolação em coeficientes de modelos autorregressivos (AR), para fornecer informações futuras de condições de estruturas na existência de mecanismo de danos pré-definidos. Os modelos AR são estimados considerando a predição de um passo à frente, verificados e validados a partir de dados de vibração de uma estrutura na condição não danificada. Os erros de predição são usados para extrair um indicador para classificar a condição do sistema. Então, um novo modelo é identificado se qualquer variação de índices de dano ocorrer, e seus coeficientes são comparados com os do modelo de referência. A extrapolação dos coeficientes de AR é realizada através das splines cúbicas por partes que evitam possíveis instabilidades e alterações indesejáveis dos polinômios, obtendo aproximações adequadas através de polinômios de baixa ordem. Uma curva de tendência para o indicador capaz de predizer o comportamento futuro pode ser obtida a partir da extrapolação direta dos coeficientes. Uma estrutura de três andares com um para-choque e uma coluna de alumínio colocada no centro do último andar são analisados com diferentes cenários de dano para ilustrar a abordagem. Os resultados indicam a possibilidade de estimar a condição futura do sistema a partir dos dados de vibração nas condições de danos iniciais.
Abstract: The main purpose of this work is to apply extrapolation methods upon coefficients of autoregressive models (AR), to provide future condition information of structures in the existence of predefined damage mechanism. The AR models are estimated considering one-step-ahead prediction, verified and validated from vibration data of a structure in the undamaged condition. The prediction errors are used to extract an indicator to classify the system state condition. Then, a new model is identified if any variation of damage indices occurs, and its coefficients are compared to the ones from the reference model. The extrapolation of the AR coefficients is performed through the piecewise cubic splines that avoid possible instabilities and undesirable changes of the polynomials, obtaining suitable approximations through low-order polynomials. A trending curve for the indicator capable of predicting future behavior can be obtained from direct coefficient extrapolation. A benchmark of a three-story building structure with a bumper and an aluminum column placed on the center of the top floor is analyzed with different damage scenarios to illustrate the approach. The results indicate the feasibility of estimating the future system state from the vibration data in the initial damage conditions.
Mestre
Silvennoinen, Annastiina. "Essays on autoregressive conditional heteroskedasticity." Doctoral thesis, Stockholm : Economic Research Institute, Stockholm School of Economics (EFI), 2006. http://www2.hhs.se/EFI/summary/711.htm.
Full textLi, Chun-wah. "On a double threshold autoregressive heteroskedastic time series model /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13745037.
Full textLudkin, Matthew Robert. "The autoregressive stochastic block model with changes in structure." Thesis, Lancaster University, 2017. http://eprints.lancs.ac.uk/125642/.
Full textCrespo, Cuaresma Jesus, and Philipp Piribauer. "Bayesian Variable Selection in Spatial Autoregressive Models." WU Vienna University of Economics and Business, 2015. http://epub.wu.ac.at/4584/1/wp199.pdf.
Full textSeries: Department of Economics Working Paper Series
Schnücker, Annika [Verfasser]. "Model Selection Methods for Panel Vector Autoregressive Models / Annika Schnücker." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176708147/34.
Full textCamehl, Annika [Verfasser]. "Model Selection Methods for Panel Vector Autoregressive Models / Annika Schnücker." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176708147/34.
Full textLiu, Yingying. "Bayesian hierarchical normal intrinsic conditional autoregressive model for stream networks." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6606.
Full textQu, Xi. "Three Essays on the Spatial Autoregressive Model in Spatial Econometrics." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365455610.
Full textEhlers, Ricardo Sandes. "Bayesian model discrimination for time series and state space models." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843599/.
Full textUysal, Ela. "Application Of Nonlinear Unit Root Tests And Threshold Autoregressive Models." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614878/index.pdf.
Full textPfarrhofer, Michael, and Philipp Piribauer. "Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models." Elsevier, 2019. http://epub.wu.ac.at/6839/1/1805.10822.pdf.
Full textHorton, Wendy Elizabeth. "A vector autoregressive model of a regional Phillips curve in the United States." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30515.
Full textKou, Tong-Zhang. "Parameter estimation for exponential signals in colored noise using the pseudo-autoregressive (PAR) model." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-03042009-041238/.
Full textAlbarracin, Orlando Yesid Esparza. "Generalized autoregressive and moving average models: control charts, multicollinearity, and a new modified model." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21112017-184544/.
Full textRecentemente, no campo da saúde, gráficos de controle têm sido propostos para monitorar a morbidade ou a mortalidade decorrentes de doenças. Este trabalho está composto por três artigos. Nos dois primeiros artigos, gráficos de controle CUSUM e EWMA foram propostos para monitorar séries temporais de contagens com efeitos sazonais e de tendência usando os modelos Generalized autoregressive and moving average models (GARMA), em vez dos modelos lineares generalizados (GLM), como usualmente são utilizados na prática. Diferentes estatísticas baseadas em transformações, para variávies que seguem uma distribuição Binomial Negativa, foram usadas nestes gráficos de controle. No segundo artigo foram propostas duas novas estatísticas baseadas na razão da função de log-verossimilhança. Diferentes cenários que descrevem perfis de doenças foram considerados para avaliar o efeito da omissão da correlação serial nesses gráficos de controle. Este impacto foi medido em termos do Average Run Lenght (ARL). Notou-se que a negligência da correlação serial induz um aumento de falsos alarmes. Em geral, todas as estatísticas monitoradas apresentaram menores valores de ARL_0 para maiores valores de autocorrelação. No entanto, nenhuma estatística entre as consideradas mostrou ser mais robusta, no sentido de produzir o menor aumento de falsos alarmes nos cenários considerados. No último artigo, foram estudados os modelos GARMA (p, q) com p e q simultaneamente diferentes de zero, uma vez que duas características foram observadas na prática. A primeira é a presença de multicolinearidade, que induz à não-convergência do método de máxima verossimilhança usando mínimos quadrados ponderados reiterados. A segunda é a inclusão dos mesmos termos defasados nos componentes autorregressivos e de médias móveis. Um modelo modificado, GARMA-M, foi apresentado para lidar com a multicolinearidade e melhorar a interpretação dos parâmetros. Em sentido geral, estudos de simulação mostraram que o modelo modificado fornece estimativas mais próximas dos parâmetros e intervalos de confiança com uma cobertura percentual maior do que a obtida nos modelos GARMA. No entanto, algumas restrições no espaço paramétrico são impostas para garantir a estacionariedade do processo. Por último, uma análise de dados reais ilustra o ajuste do modelo GARMA-M para o número de internações diárias de idosos devido a doenças respiratórias de outubro de 2012 a abril de 2015 na cidade de São Paulo, Brasil.
Somal, Harsimran S. "Heterogeneous computing for the Bayesian hierarchical normal intrinsic conditional autoregressive model with incomplete data." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2145.
Full textLee, Joo Young, and Youn Mi Lee. "Dynamic Impact of Aging on Income Inequality in the U.S. with Vector Autoregressive Model." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/secfr-conf/2020/schedule/57.
Full textBao, Yan. "The Simultaneous Spatial Autoregressive Model and Its Application in the Housing and Pharmaceutical Markets." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366131746.
Full textNyarige, Euna Gesare Verfasser], and Jürgen [Akademischer Betreuer] [Franke. "The Bootstrap for the Functional Autoregressive Model FAR(1) / Euna Gesare Nyarige. Betreuer: Jürgen Franke." Kaiserslautern : Technische Universität Kaiserslautern, 2016. http://d-nb.info/1106250273/34.
Full textHsu, Wei-Chih, and 徐偉智. "Identification of Signal Poles of Autoregressive Model Under Noisy Environment." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/57033238609295702239.
Full text國立臺灣大學
電機工程研究所
82
In order to generalize the AR modeling to noisy environment, in this dissertation, we consider the identification problems of AR model-based signals corrupted by a white Gaussian noise. The signals will be considered are the AR process, the complex sinusoids, the damped sinusoids. Our proposed approach first analyzes the observed data by a large order AR spectral estimator to get the zeros of prediction error filter (PEF). Then an identification schemes are developed to extract signal component from the overestimated zeros of the PEF. After the zeros corresponding to the signal of interest have been identified, the desired parameters can be determined subsequently. As for the noisy AR process, the proposed identification scheme combines the advantages of large order AR spectral estimator and the autoregressive moving-averaging (ARMA) modeling. With regard to the complex sinusoidal signal, the excellent resolution capability of the AR frequency estimator (FE) for two equal power sinusoids is investigated theoretically in the domain of PEF''s zeros. We also develop a combined detection-estimation (CDE) selecting procedure and its modified version to determine the estimates of the number and frequencies of the complexes sinusoids from the zeros of the PEF. Moreover, the CDE selecting procedure is generalized to identify the damped sinusoids involved in noise. In order to let the CDE selecting procedure produce more accurate estimates, an improvement filter is proposed to enhance the damped sinusoids from noise so that the signal-to-noise ratio increase. From the results demonstrated in this dissertation, it will be seen that our new methods can provide satisfactory detection and estimation performance even though the data records are short and the noise level is high.
"IDENTIFICATION OF PERIODIC AUTOREGRESSIVE MOVING AVERAGE MODELS." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1083682/index.pdf.
Full textEl, Ayadi Moataz. "Autoregressive models for text independent speaker identification in noisy environments." Thesis, 2008. http://hdl.handle.net/10012/4036.
Full text"Model selection for vector autoregressive processes." 2000. http://library.cuhk.edu.hk/record=b5890377.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2000.
Includes bibliographical references (leaves 87-88).
Abstracts in English and Chinese.
Chapter Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- The importance of Vector Time Series Analysis --- p.1
Chapter 1.2 --- Objective --- p.3
Chapter Chapter 2 --- Vector Autoregressive Models --- p.5
Chapter 2.1 --- The VAR(p) models --- p.5
Chapter 2.2 --- Least square estimation method --- p.7
Chapter 2.3 --- VAR forecast --- p.9
Chapter Chapter 3 --- Model Selection Criteria --- p.12
Chapter 3.1 --- VAR order selection methods --- p.12
Chapter 3.2 --- Hsiao's sequential method --- p.17
Chapter 3.2.1 --- Two variables case --- p.19
Chapter 3.2.2 --- Three variables case --- p.24
Chapter Chapter 4 --- Illustrative Examples --- p.32
Chapter Chapter 5 --- A Simulation Study --- p.37
Chapter 5.1 --- Designs of experiments --- p.37
Chapter 5.2 --- Simulation results --- p.47
Chapter Chapter 6 --- Summary --- p.53
Tables --- p.55
References --- p.87
"Threshold autoregressive model with multiple threshold variables." 2005. http://library.cuhk.edu.hk/record=b5892601.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 33-35).
Abstracts in English and Chinese.
Chapter 1. --- Introduction --- p.1
Chapter 2. --- The Model --- p.4
Chapter 3. --- Least Squares Estimations --- p.6
Chapter 4. --- Inference --- p.7
Chapter 4.1 --- Asymptotic Joint Distribution of the Threshold Estimators --- p.7
Chapter 4.2 --- Testing Threshold Effect: Model Selection Followed by Testing --- p.13
Chapter 5. --- Modeling --- p.16
Chapter 5.1 --- Generic Consistency of the Threshold Estimators under specification errors --- p.17
Chapter 5.2 --- Modeling Procedure --- p.20
Chapter 6. --- Monte Carlo Simulations --- p.21
Chapter 7. --- Empirical Application in the Financial Market --- p.24
Chapter 7.1 --- Data Description --- p.26
Chapter 7.2 --- Estimated Results --- p.26
Chapter 8. --- Conclusion --- p.30
References --- p.33
Appendix 1: Proof of theorem1 --- p.36
Appendix 2: Proof of theorem2 --- p.39
Appendix 3: Proof of theorem3 --- p.43
List of Graph --- p.49
Chiang, Yu-Yun, and 江昱昀. "Bayesian Inference for Smooth Transition Autoregressive Model." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/9a7duw.
Full text中原大學
應用數學研究所
106
The Bayesian statistics have been successfully commonly applied in many fields. The BUGS project, including OpenBUGS and its Windows version WinBUGS, has been one of the popular Bayesian soft. In BUGS language, users specify a statistical model by simply stating the likelihood function and the prior distributions of the corresponding parameters, then OpenBUGS computationally approximates the estimates of the empirical distribution by the MCMC methods. In this thesis, we consider to analyze the simulated data from smooth transition autoregressive (STAR) model using a newly developed R NIMBLE package, which is also defined in BUGS language and is much faster than OpenBUGS. Finally, the mean squared error of the estimates are computed to demonstrate the effectiveness of the MCMC method.
Luruli, Fululedzani Lucy. "ARIMA forecasts of the number of beneficiaries of social security grants in South Africa." Diss., 2011. http://hdl.handle.net/10500/5810.
Full textMathematical Sciences
M.Sc. (Statistics)
Tu, Yi-Hsuan, and 杜宜軒. "Modified WIC for Order Selection in Autoregressive Model." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/07897542770727722926.
Full text國立成功大學
統計學系
88
We proposed two modified weighted information criteria (WIC), WICu and WICs, combining AICu with BIC and SICc, respectively, for order selection in autoregressive model. WICu is essentially equivalent to AICu for small sample sizes and to BIC for large sample sizes. Similarly, WICs is equivalent to SICc for large sample sizes and close to AICu for small sample sizes. Both of them are weakly consistent under general conditions. We also compare WICu and WICs with several popular criteria by simulation study. It shows WICu and WICs are better or at least comparable to WIC. In particular, for small samples, WICu and WICs perform as well as AICu and outperform other criteria, and for large sample sizes, WICu and WICs perform as well as BIC and SIC, respectively, and outperform other criteria.
"Change point estimation for threshold autoregressive (TAR) model." 2012. http://library.cuhk.edu.hk/record=b5549066.
Full textThis article considers the problem of modeling non-linear time series by using piece-wise TAR model. The numbers of change points, the numbers of thresholds and the corresponding order of AR in each piecewise TAR segments are assumed unknown. The goal is to nd out the “best“ combination of the number of change points, the value of threshold in each time segment, and the underlying AR order for each threshold regime. A genetic algorithm is implemented to solve this optimization problem and the minimum description length principle is applied to compare various segmented TAR. We also show the consistency of the minimal MDL model selection procedure under general regularity conditions on the likelihood function.
Detailed summary in vernacular field only.
Tang, Chong Man.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 45-47).
Abstracts also in Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Introduction --- p.1
Chapter 2 --- Minimum Description Length for Pure TAR --- p.4
Chapter 2.1 --- Model selection using Minimum Description Length for Pure TAR --- p.4
Chapter 2.1.1 --- Derivation of Minimum Description Length for Pure TAR --- p.5
Chapter 2.2 --- Optimization Using Genetic Algorithms (GA) --- p.7
Chapter 2.2.1 --- General Description --- p.7
Chapter 2.2.2 --- Implementation Details --- p.9
Chapter 3 --- Minimum Description Length for TAR models with structural change --- p.13
Chapter 3.1 --- Model selection using Minimum Description Length for TAR models with structural change --- p.13
Chapter 3.1.1 --- Derivation of Minimum Description Length for TAR models with structural change --- p.14
Chapter 3.2 --- Optimization Using Genetic Algorithms --- p.17
Chapter 4 --- Main Result --- p.20
Chapter 4.1 --- Main results --- p.20
Chapter 4.1.1 --- Model Selection using minimum description length --- p.21
Chapter 5 --- Simulation Result --- p.24
Chapter 5.1 --- Simulation results --- p.24
Chapter 5.1.1 --- Example of TAR Model Without Structural Break --- p.24
Chapter 5.1.2 --- Example of TAR Model With Structural Break I --- p.26
Chapter 5.1.3 --- Example of TAR Model With Structural Break II --- p.29
Chapter 6 --- An empirical example --- p.33
Chapter 6.1 --- An empirical example --- p.33
Chapter 7 --- Consistency of the CLSE --- p.36
Chapter 7.1 --- Consistency of the TAR parameters --- p.36
Chapter 7.1.1 --- Consistency of the estimation of number of threshold --- p.36
Chapter 7.1.2 --- Consistency of the change point parameters --- p.43
Bibliography --- p.45
Huang, Huei-Chuan, and 黃慧釧. "On Continuous Time Threshold Autoregressive Model : a BayesianApplication." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46853031482626088317.
Full text中原大學
應用數學研究所
94
The non-linear continuous time models have important applications in time series analysis. However, their likelihood functions are usually not available. As a result, the analysis is trickier than that of their discrete time conunterparts. In this study, we use the Bayesian method to analyze the continuous time threshold autoregressive models. This approach is based on Roberts and Stramer (2001) and Lin (2003). In the applications to financial data S&P 500, we assume the daily data are not equally spaced since the stock market only opens on weekdays and we treat the paths between observed data are missing.
LU, SHI-PING, and 盧世屏. "An autoregressive-moving average model for shape analysis." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/58917998612493413928.
Full text