Academic literature on the topic 'IDF curves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IDF curves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IDF curves"
Acosta-Castellanos, Pedro Mauricio, Yuddy Alejandra Castro Ortegón, and Nestor Rafael Perico Granados. "Regionalization of IDF Curves by Interpolating the Intensity and Adjustment Parameters: Application to Boyacá, Colombia, South America." Water 15, no. 3 (January 31, 2023): 561. http://dx.doi.org/10.3390/w15030561.
Full textAriff, Noratiqah Mohd, Abdul Aziz Jemain, and Mohd Aftar Abu Bakar. "Potential of plotting positions for intensity-duration-frequency curves with short rainfall records." Malaysian Journal of Fundamental and Applied Sciences 13, no. 4-1 (December 5, 2017): 394–99. http://dx.doi.org/10.11113/mjfas.v13n4-1.814.
Full textde Souza Costa, Carlos Eduardo Aguiar, Claudio José Cavalcante Blanco, and José Francisco de Oliveira-Júnior. "IDF curves for future climate scenarios in a locality of the Tapajós Basin, Amazon, Brazil." Journal of Water and Climate Change 11, no. 3 (January 16, 2019): 760–70. http://dx.doi.org/10.2166/wcc.2019.202.
Full textNandalal, K. D. W., and P. Ghnanapala. "Development of IDF Curves for Colombo." Engineer: Journal of the Institution of Engineers, Sri Lanka 50, no. 1 (February 9, 2017): 33. http://dx.doi.org/10.4038/engineer.v50i1.7242.
Full textAlsumaiti, Tareefa S., Khalid A. Hussein, Dawit T. Ghebreyesus, Pakorn Petchprayoon, Hatim O. Sharif, and Waleed Abdalati. "Development of Intensity–Duration–Frequency (IDF) Curves over the United Arab Emirates (UAE) Using CHIRPS Satellite-Based Precipitation Products." Remote Sensing 16, no. 1 (December 20, 2023): 27. http://dx.doi.org/10.3390/rs16010027.
Full textSchardong, Andre, Slobodan P. Simonovic, Abhishek Gaur, and Dan Sandink. "Web-Based Tool for the Development of Intensity Duration Frequency Curves under Changing Climate at Gauged and Ungauged Locations." Water 12, no. 5 (April 27, 2020): 1243. http://dx.doi.org/10.3390/w12051243.
Full textMohymont, B., G. R. Demarée, and D. N. Faka. "Establishment of IDF-curves for precipitation in the tropical area of Central Africa - comparison of techniques and results." Natural Hazards and Earth System Sciences 4, no. 3 (May 28, 2004): 375–87. http://dx.doi.org/10.5194/nhess-4-375-2004.
Full textThanh, Son Tran, and Anh Ha Xuan. "Deriving of Intensity–Duration–Frequency (IDF) curves for precipitation at Hanoi, Vietnam." E3S Web of Conferences 403 (2023): 06002. http://dx.doi.org/10.1051/e3sconf/202340306002.
Full textMohammed, Abdulrasheed, Salisu Dan’Azumi, Abubakar Ahmed Modibbo, and Abubakar Abbas Adamu. "DEVELOPMENT OF RAINFALL INTENSITY DURATION FREQUENCY (IDF) CURVES FOR DESIGN OF HYDRAULIC STRUCTURES IN KANO STATE, NIGERIA." Platform : A Journal of Engineering 5, no. 2 (June 30, 2021): 10. http://dx.doi.org/10.61762/pajevol5iss2art12706.
Full textSingh, Vijay P., and Lan Zhang. "IDF Curves Using the Frank Archimedean Copula." Journal of Hydrologic Engineering 12, no. 6 (November 2007): 651–62. http://dx.doi.org/10.1061/(asce)1084-0699(2007)12:6(651).
Full textDissertations / Theses on the topic "IDF curves"
Castillo, Jean M. "Duration-rainfall intensity equations : study of IDF curves using local precipitation data /." Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1203570521&sid=23&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textHaruna, Abubakar. "Améliorer l'estimation des aléas de précipitations grâce aux relations Intensité-Durée-Aire-Fréquence (IDAF). Application à une zone à la topographie complexe." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALU002.
Full textIn an era marked by increasingly volatile weather patterns and their profound impact, reliable prediction of extreme precipitation across multiple scales has never been more challenging. Despite its pivotal significance, accurate prediction remains a formidable challenge, especially in mountainous regions that are particularly susceptible to extreme precipitation hazards. As a result, more robust and efficient tools are needed for reliable prediction.Intensity-Duration-Area-Frequency (IDAF) relationships summarize the main statistical characteristics of extreme precipitation. They are used for areal rainfall hazard quantification, storm characterization, and early warning system development. While Intensity-Duration--Frequency (IDF) relationships for point precipitation have been extensively studied, IDAF relationships, accounting for the area of accumulation, have received far less attention and to our knowledge only for extremes.This thesis aims to model the IDAF relationships for the whole range of non-zero precipitation in topographically complex areas (with application in Switzerland) where robust and flexible models are required due to the strong spatio-temporal variability of precipitation. The key novelty is that IDAF relationships are developed for the whole range of non-zero precipitation intensities, not just extremes. In addition to its usual application, the marginal distributions from the relationships can be utilized in stochastic weather generators.Four objectives were identified and carefully addressed. First, we identified a parsimonious three-parameter model within the extended generalized Pareto distribution (EGPD) family to model the distribution of non-zero precipitation intensities. Second, we build regionalization models based on three regionalization approaches to improve the robustness and reliability of daily precipitation estimates. The first relies on a fast algorithm that defines distinct homogeneous regions based on upper tail similarity, the second is based on the region-of-influence approach, and the third is a spatial approach based on Generalized Additive Model. All the regional models offered improved robustness and reliability in prediction compared to the local model (without regionalization). The GAM-based method was better in the upper tail, while the ROI method performed better in the bulk of the distribution.Third, we developed IDF relationships using all non-zero rainfall intensities for 30 min to 72 hr, making efficient use of available information. Three approaches were considered, the first is based on precipitation scale invariance, the second relies on the general IDF formulation, and the last is purely data-driven, employing empirically determined relationships to model the IDF relationships. The best results were shown by the model based on the data-driven approach. It reproduced the known space and time variability of extreme rainfall across Switzerland, catchment-level IDF curves were generated from it for operational use, and the daily marginal distributions derived from the models are intended to be used in a stochastic weather generator currently developed for operational use.Finally, we constructed IDAF relationships based on a data-driven approach for 1 to 72 hr and 1 to 1,089 km2 at each pixel, utilizing a radar-reanalysis product. The model allowed us to characterize areal precipitation hazards for a continuum of spatio-temporal scales. Overall, the results provided insights into the seasonal and regional patterns of precipitation hazards in Switzerland, highlighting the importance of considering multiple spatio-temporal scales when assessing extreme precipitation hazards. For short durations (e.g. 1 hr), the highest levels are almost exclusively observed in summer, while for the daily scale, the highest levels are observed during autumn, particularly in Ticino, a region identified as the most exposed to extreme precipitation across all scales
Eckersten, Sofia. "Updating Rainfall Intensity-Duration-Frequency Curves in Sweden Accounting for the Observed Increase in Rainfall Extremes." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283714.
Full textÖkad extrem nederbörd har dokumenterats globalt, däribland centrala och norra Europa. Den globala uppvärmningen medför en förhöjd medeltemperatur vilket i sin tur ökar avdunstning av vatten från ytor samt atmosfärens förmåga att hålla vatten. Dessa förändringar tros kunna öka och intensifiera nederbörd. Vid bestämning av dimensionerande nederbördsintensiteter för byggnationsprojekt antas idag att frekvensen och storleken av extrem nederbörd inte kommer att förändras i framtiden (stationäritet), vilket i praktiken innebär ingen förändring i klimatet. Den här studien syftar till att undersöka effekten av en icke-stationärt antagande vid skattning av dimensionerande nederbördsintensitet. Icke-stationära och stationära nerderbördsintensiteter föråterkomsttider mellan 10 och 100år bestämdes utifrån daglig och flerdaglig svensk nederbörds- data. Nederbördintensiteterna bestämdes med extremvärdesanalys i mjukvaran NEVA, där den generella extremvärdesfördelningen anpassades till årlig maximum nederbörd på platser i Sverige som påvisade en ökande trend under de senaste 50åren (15% till 39 % utav 139 stationer, beroende på varaktighet). De dimensionerande nederbördsintensiteterna jämfördes sedan med avseende på varaktighet, återkomsttid och plats. Resultaten indikerade på att ett stationärt antagande riskerar att underskatta dimensionerande nederbördsintensiteter för en viss återkomsttid med upp till 40 %. Detta indikerar att antagandet om icke-stationäritet har större betydelse för olika platser i Sverige, vilket skulle kunna ge viktig information vid bestämning av dimensionerande regnintensiteter.
Torres, Quintana Eduardo Andrés. "Determinación de curvas IDF en la Región de Antofagasta, Chile." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/138960.
Full textEn la región de Antofagasta, ubicada en el extremo norte de Chile, se encuentra una de las zonas más áridas de Sudamérica. La cantidad de ríos y lagos que se ubican en la zona son escasos, y es por esto que la recolección y utilización de aguas no saladas es dificultosa, a la vez que cualquier tipo de proyecto que tenga que ver con hidráulica el recurso hídrico. Sumado a lo anterior, la información hidrológica de la zona es escasa, debido a la baja cantidad de estaciones de medición disponible, con un extenso período continuo de tiempo, ya los pocos estudios actualizados realizados en la zona, siendo el Atlas de "Precipitaciones máximas 1, 2 y 3 días" (DGA 1991) el más actualizado en curvas IDF, lo cual no es adecuado para el diseño de obras hidráulicas en el año 2016, debido a que no incorpora los últimos 25 años de la historia climática de la zona. Por ello, los objetivos del trabajo de título aquí presente serán actualizar los coeficientes de duración y frecuencia, curvas IDF (Intensidad-Duración-Frecuencia) de Antofagasta y presentar isoyetas actualizadas de la II región de Chile. Se realizaron todos los procesos normales en el análisis de datos hidrológicos para distribuciones extremas, conducentes a obtener proyecciones acertadas de la precipitación en escalas de tiempo de 1 a 72 horas, para períodos de retorno entre 2 a 100 años. El proceso realizado se divide en 3 grandes secciones. Primero, la obtención de datos, la cual se realizó a partir de la información de precipitaciones diarias disponible en el Banco Nacional de Aguas y la Dirección Meteorológica de Chile (DMC) y, se incorpora la información de datos horarios de reanálisis de la NASA, y CISL RDA. . Segundo, Análisis de Frecuencia, donde se encontraron las distribuciones que mejor representaban a los datos obtenidos y a partir de estas, se obtuvieron los coeficientes de duración y frecuencia para cada estación. Tercero, la generación de isoyetas correspondientes a la precipitación de período de retorno de 10 años y duración de 1 día, y las curvas Intensidad-Duración-Frecuencia para cada localidad. Los resultados demuestran la utilidad del uso de datos de reanálisis, y que las tormentas en el extremo norte del país han variado entre un 3 a un 15% (tanto para coeficientes de duración como de frecuencia) para algunas zonas, e, incluso, hasta variaciones superiores al 30% (positivas o negativas) para otras en su intensidad promedio para sus diferentes duraciones y períodos de retorno, al igual que en sus valores de cantidad total precipitada por tormenta extrema. Se concluye que los resultados antiguos ya no son adecuados para el diseño de obras hidráulicas actuales Las curvas IDF y las isoyetas presentadas son suficientes por tanto para proyectos que utilicen de las precipitaciones en la región de Antofagasta.
Ludwig, Katharina. "Moduli of spin curves." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985261056.
Full textWedeniwski, Sebastian. "Primality tests on commutator curves." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963295438.
Full textMarkwig, Hannah. "The enumeration of plane tropical curves." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980700736.
Full textGonçalves, Lidiane Souza. "Relações intensidade-duração-frequência com base em estimativas de precipitação por satélite." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/49152.
Full textNowadays, there is a need for urban drainage projects and planning in Brazil, due to continuing urbanization and a new legal framework. Such plans and projects will demand Intensity-Duration-Frequency (IDF) relations, at least for cities larger than 100.000 inhabitants. Such relations, as well as the pluviographic data which is needed to build them, are often unavailable in Brazil. In this research IDF relations were estimated based on 3-hourly TRMM precipitation estimates. They were then compared to standard IDF relations in sites with pluviographic data. In addition, TRMM IDF relations were compared with another alternative technique for places lacking pluviographic data. Results showed that TRMM estimation of the rainfall still has important uncertainties, but are an alternative method for places without rainfall data.
Rosalem, Lívia Malacarne Pinheiro. "Invento para determinação da interceptação de chuva pela serrapilheira em ecossistemas florestais." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-16042018-110427/.
Full textForest litter is the layer above the ground of the forest formed by materials that fall from the vegetation itself. The vegetation materials are through various stages of decomposition, functioning as a mechanism of rainfall interception. Although the interception process is significant in forested areas, this process is usually underestimated or even neglected in hydrological models due to the difficulties on obtaining these data. We proposed the development of a device that allows the field measurements of the forest litter interception in a cerrado sensu stricto area. The Litter Interception Device (LID), was tested and calibrated in the laboratory. We used simulated rainfall with three different intensities to test the device and also three different amounts of litter, 0.100, 0.230 and 0.470 kg. The litter samples used in the tests were taken from an experimental area of cerrado sensu stricto located in Itirapina, State of São Paulo, Brazil. The intensities of simulated rainfall were obtained from an Intensity-Duration-Frequency (IDF) curve made for the experimental area. Besides the LID functioning tests, the device was tested to determine the parameters Cmax and Cmin (maximum capacity and minimum storage capacity, respectively) of the cerrado sensu stricto forest litter. The results showed that the LID allows measurements of the volume of water retained in the forest litter (mm.min-1) as well as its evaporation (mm.min-1). The pluviometer calibration tests revealed that the measurements were always underestimated, requiring a calibration curve (R2 = 0.99) to correct the volume records that flow to the tipping bucket pluviometer. The values found for Cmax (1.0 - 3.07 mm) and Cmin (0.78 - 2.27 mm) are according with those found by other authors for different kinds of forest litters. It was verified that the variation in the amount of forest litter (kg) influenced more in these values, than the rainfall intensity (mm.min-1) . We concluded that the LID can be used in studies that intend to analyze the role of the forest litter in hydrological processes, whether they area for the determination of the interception of rain in the field or even and in laboratory studies to determine interception parameters of forest litter.
Qin, Qing. "Effects of Divergent Selection for Insulin-like Growth Factor I (IGF-I) on Mature Weight and Growth Curves in Angus Cattle." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275352602.
Full textBooks on the topic "IDF curves"
Garrino, Lorenza, ed. Strumenti per una medicina del nostro tempo. Florence: Firenze University Press, 2015. http://dx.doi.org/10.36253/978-88-6655-837-8.
Full textDeveloping Future Projected Intensity-Duration-Frequency (IDF) Curves: A Technical Report on Data, Methods, and IDF Curves for the Chesapeake Bay Watershed and Virginia. RAND Corporation, 2021. http://dx.doi.org/10.7249/tla1365-1.
Full textTakama, Takeshi, Muhammad Bilal, and K. Srinivasa Raju, eds. Impact of Climate Change on Hydrology and Water Resources. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781789064421.
Full textHrushovski, Ehud, and François Loeser. Curves. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.003.0007.
Full textDean, Richard. Neurodiversity and the Rejection of Cures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812876.003.0008.
Full textVenkat, Bharat Jayram. At the Limits of Cure. Duke University Press, 2021. http://dx.doi.org/10.1215/9781478022022.
Full textBaulch, Bob. Poverty Monitoring and Targeting Using ROC Curves: Examples from Vietnam: IDS Working Paper 161. Institute of Development Studies (IDS), 2002.
Find full textQuick, Laura. Deuteronomy 28 and Ancient Near Eastern Curses. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198810933.003.0002.
Full textAttanasio, John. Income and Wealth Disparities, and the Demand Curve. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190847029.003.0011.
Full textTretkoff, Paula. Line Arrangements in P2(C) and Their Finite Covers. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0006.
Full textBook chapters on the topic "IDF curves"
Al-Wagdany, A. S. "Sensitivity of IDF Curves to Rainfall Gauge Type." In Patterns and Mechanisms of Climate, Paleoclimate and Paleoenvironmental Changes from Low-Latitude Regions, 99–102. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01599-2_23.
Full textMamoon, Abdullah Al, Ataur Rahman, and Niels E. Joergensen. "Assessment of Climate Change Impacts on IDF Curves in Qatar Using Ensemble Climate Modeling Approach." In Springer Water, 153–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02197-9_7.
Full textPeruš, Iztok, Robert Klinc, Matevž Dolenc, and Matjaž Dolšek. "Innovative Computing Environment for Fast and Accurate Prediction of Approximate IDA Curves." In Computational Methods in Applied Sciences, 259–72. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6573-3_13.
Full textChali, Wagari Ejigu, Brijesh Kumar, and Dipankar Roy. "Development of Intensity–Duration–Frequency (IDF) Curve for Extreme Flood Evaluation for Holeta Town, Ethiopia." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition), 701–3. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-43922-3_157.
Full textRodríguez-Otero, Paula, and Jesús F. San Miguel. "Post-CAR-T Cell Therapy (Consolidation and Relapse): Multiple Myeloma." In The EBMT/EHA CAR-T Cell Handbook, 173–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_34.
Full textVennekens, Joost. "Lowering the Learning Curve for Declarative Programming: A Python API for the IDP System." In Practical Aspects of Declarative Languages, 86–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51676-9_6.
Full text"7.7 The Construction of IDF Curves." In Hydrology, 158–60. CRC Press, 2010. http://dx.doi.org/10.1201/b10426-38.
Full text"7.5 IDF (Intensity-Duration-Frequency) Curves." In Hydrology, 157. CRC Press, 2010. http://dx.doi.org/10.1201/b10426-37.
Full textTayşi, H., and M. Özger. "Disaggregation of future GCMs to generate IDF curves for the assessment of urban floods." In Impact of Climate Change on Hydrology and Water Resources. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781789064421_ch22.
Full textJamil, Rehan. "GIS-Based Watershed Analysis for Water Storage Facilities in Underdeveloped Areas." In Handbook of Research on Driving Transformational Change in the Digital Built Environment, 164–78. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6600-8.ch007.
Full textConference papers on the topic "IDF curves"
Singh, Vijay P., and Zengchao Hao. "Entropy-Based Probability Distribution for IDF Curves." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)131.
Full textS Imran Ahmed, R.P Rudra, B Gharabaghi, and J Pedikaris. "Change in IDF curves for a River basin in southern Ontario." In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23207.
Full textSherif, Mohsen, Rezaul Chowdhury, and Ampar Shetty. "Rainfall and Intensity-Duration-Frequency (IDF) Curves in the United Arab Emirates." In World Environmental and Water Resources Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413548.231.
Full textLucantonio, Mara, Benedetta Moccia, Claudia Bertini, Luca Buonora, and Francesco Napolitano. "Climate corrected intensity-duration-frequency (IDF) curves: A case study in Rome, Italy." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0163789.
Full textKim, Taesoon, Ju-Young Shin, Kewtae Kim, and Jun-Haeng Heo. "Improving Accuracy of IDF Curves Using Long- and Short-Duration Separation and Multi-Objective Genetic Algorithm." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)128.
Full textNguyen, Van-Thanh-Van. "Development of New Methods for Updating IDF Curves in Canada in the Context of Climate Change." In World Environmental and Water Resources Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482964.019.
Full textAlmahrouqi, Sabah. "Extreme Precipitation Analysis and Updated Intensity-Duration-Frequency (IDF) Curves over MENA Region under Future Climate Scenarios." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc2521711920221240.
Full textGao, Peng, and Gregory J. Carbone. "THE INFLUENCE AND IMPLICATIONS OF A SINGLE EXTREME EVENT ON INTENSITY-DURATION-FREQUENCY (IDF) CURVES IN SOUTH CAROLINA." In 65th Annual Southeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016se-273786.
Full text"Assessment of projected change in Intensity-duration-frequency (IDF) curves for Southeastern, United States using Artificial Neural Networks." In 2022 ASABE Annual International Meeting, July 17-20, 2022. American Society of Agricultural and Biological Engineers, 2022. http://dx.doi.org/10.13031/aim.202200175.
Full textMathasoliya, Nayana D., and Sanskriti S. Mujumdar. "Verification of Discharge Carrying Capacity of Existing Stormwater Drain Using New IDF Curves—A Case Study of Vadodara Airport." In ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482032.069.
Full textReports on the topic "IDF curves"
Budzich, Jeffrey. PR-685-184506-R03 Monitoring Techniques For Determining Critical Return Period Flood Alert Triggers. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2020. http://dx.doi.org/10.55274/r0011667.
Full textWagner, Anna, Christopher Hiemstra, Glen Liston, Katrina Bennett, Dan Cooley, and Arthur Gelvin. Changes in climate and its effect on timing of snowmelt and intensity-duration-frequency curves. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41402.
Full textLozada, Gabriel A. The Perils of Antitrust Econometrics: Unrealistic Engel Curves, Inadequate Data, and Aggregation Bias. Institute for New Economic Thinking Working Paper Series, May 2023. http://dx.doi.org/10.36687/inetwp203.
Full textShim, D. J., Gery Wilkowski, Mohammed Uddin, Sureshkumar Kalyanam, and P. Mincer. PR-276-094509-R01 Develop Fracture Initiation Criteria for High-Strength Steel Line Pipe Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2013. http://dx.doi.org/10.55274/r0010072.
Full textCarlsson, Mikael, Julián Messina, and Oskar Nordström Skans. Firm-Level Shocks and Labor Flows. Inter-American Development Bank, January 2021. http://dx.doi.org/10.18235/0003002.
Full textCarlsson, Mikael, Julián Messina, and Oskar Nordström Skans. Firm-Level Shocks and Labor Flows. Inter-American Development Bank, January 2021. http://dx.doi.org/10.18235/0003002.
Full textCunha, Daniel, Giovana Craveiro, and Marina Rossi. The Impact of the Creation of a Sovereign ESG Reference Yield Curve on Corporate ESG Bonds Issuances from Latin American and Caribbean. Inter-American Development Bank, March 2024. http://dx.doi.org/10.18235/0012859.
Full textHutchison, Michael. A Cure Worse Than the Disease? Currency Crises and the Output Costs of IMF-Supported Stabilization Programs. Cambridge, MA: National Bureau of Economic Research, May 2001. http://dx.doi.org/10.3386/w8305.
Full textÁlvarez, Carola, Jacqueline Bueso-Merriam, and Rodolfo Stucchi. So you think you know what drives disbursements at the IDB? Think, think again... Inter-American Development Bank, December 2012. http://dx.doi.org/10.18235/0009059.
Full textLee, Chung. Immune Cells, if Rendered Insensitive to Transforming Growth Factorbeta, Can Cure Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada463756.
Full text