Academic literature on the topic 'IEEE-14 POWER SYSTEM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IEEE-14 POWER SYSTEM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "IEEE-14 POWER SYSTEM"

1

Gongada, Sandhya Rani, Muktevi Chakravarthy, and Bhukya Mangu. "Power system contingency classification using machine learning technique." Bulletin of Electrical Engineering and Informatics 11, no. 6 (2022): 3091–98. http://dx.doi.org/10.11591/eei.v11i6.4031.

Full text
Abstract:
One of the most effective ways for estimating the impact and severity of line failures on the static security of the power system is contingency analysis. The contingency categorization approach uses the overall performance index to measure the system's severity (OPI). The newton raphson (NR) load flow technique is used to extract network variables in a contingency situation for each transmission line failure. Static security is categorised into five categories in this paper: secure (S), critically secure (CS), insecure (IS), highly insecure (HIS), and most insecure (MIS). The K closest neighbor machine learning strategy is presented to categorize these patterns. The proposed machine learning classifiers are trained on the IEEE 30 bus system before being evaluated on the IEEE 14, IEEE 57, and IEEE 118 bus systems. The suggested k-nearest neighbor (KNN) classifier increases the accuracy of power system security assessments categorization. A fuzzy logic approach was also investigated and implemented for the IEEE 14 bus test system to forecast the aforementioned five classifications.
APA, Harvard, Vancouver, ISO, and other styles
2

Hiwarkar, Dr Chandrashekhar S., Abhay M. Halmare, Anurag A. Belsare, Nitin B. Mohriya, and Roshan Milmile. "Load Flow Analysis on IEEE 14 Bus System." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (2022): 1572–74. http://dx.doi.org/10.22214/ijraset.2022.41590.

Full text
Abstract:
Abstract: This article presents a load flow analysis of an IEEE14 BUS system using the Newton-Raphson method, which simplifies the analysis of load balancing problems. The software used for the programming platform is MATLAB. This paper gives an overview of the electrical performance and power flows (real and reactive) under a steady state. There are various methods for load flow computations. The gauss-seidel method is more popular in smaller systems because of less computational time. In the case of larger systems computation time increases in this condition, the Newton-Raphson method is preferred. This project aims to develop a MATLAB program to calculate voltages and active and reactive power at each bus for IEEE 14 bus systems. The MATLAB program is executed with the input data and results are compared. Keywords: load flow studies, Newton-Raphson method, IEEE 14 bus system.
APA, Harvard, Vancouver, ISO, and other styles
3

Mandava, Srihari, Vanishree J, and Ramesh V. "A Spanning Tree Approach in Placing Multi-channel and Minimum Channel PMU’s for Power System Observability." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 3 (2015): 518. http://dx.doi.org/10.11591/ijece.v5i3.pp518-524.

Full text
Abstract:
Synchronized phasor measurements have become the measurement technique of choice for electric power systems. They provide positive sequence voltage and current measurements synchronized to within a microsecond. The objective is to use the spanning tree approach and tree search technique for optimal placement of multichannel and minimum channel synchronized phasor measurement units (PMUs) in order to have full observability of Power System. The novel concept of depth of observability is used and its impact on the number of PMU placements is explained. The spanning tree approach is used for the power system graphs and a tree search technique is used for finding the optimal location of PMUs. This is tested on IEEE-14 and IEEE-30 bus system. The same technique is modified to optimally place minimum channel PMUs on the same IEEE-14 and IEEE-30 bus systems. Matlab tool has been used for fulfilling the objective.
APA, Harvard, Vancouver, ISO, and other styles
4

Chakravorty, J., and J. Saraswat. "Deciding Optimal Location of DPFC in Transmission Line Using Artificial Algae Algorithm." Engineering, Technology & Applied Science Research 9, no. 2 (2019): 3978–80. http://dx.doi.org/10.48084/etasr.2667.

Full text
Abstract:
In this paper, the application of artificial algae algorithm (AAA) in optimal placement distributed power flow controller (DPFC) with MCFC in transmission networks has been proposed The proposed method is tested on IEEE 14- bus system and the results are discussed. The biggest advantage of DPFC is that it can control the active and reactive power flow and bus voltages, simultaneously. In this paper, the optimal placement of one DPFC in IEEE-14 bus system and then optimal placement of two DPFCs in IEEE-14 bus system has been proposed. Optimal placement of DPFC in power system by AAA leads to increased stability and capacity of the power transmission in lines. The proposed model has been simulated in Matlab/Simulink and the performance results are tabulated.
APA, Harvard, Vancouver, ISO, and other styles
5

Anuar, Aminudin, M. A. A. Wahab, S. N. M. Arshad, M. I. F. Romli, A. H. A. Bakar, and M. A. A. Bakar. "Transient stability for IEEE 14 bus power system using power world simulator." Journal of Physics: Conference Series 1432 (January 2020): 012009. http://dx.doi.org/10.1088/1742-6596/1432/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dhana Sai Sri, M., and P. Srinivasa Varma. "Evaluation and Analysis of Available Transfer Capability in Deregulated Power System Environment." International Journal of Engineering & Technology 7, no. 1.8 (2018): 188. http://dx.doi.org/10.14419/ijet.v7i1.8.16399.

Full text
Abstract:
Reliability of network is need of the hour in the present power system market and is constrained by capability of the network. The network calculations are performed using accurate and high efficient strategies. In order to perform power transactions in the system, the computation of available transfer capability is essential which a metric of capability of the system. Generally, effect wattless power is not taken into account in the methodologies for computation of linear available transfer capability. In this paper, a methodology which considers the reactive power flows for enhancement of linear ATC is presented. In order to perform analysis theoretically, a standard IEEE 3 bus system is considered. Another case study i.e., 14 bus system available in IEEE test systems is used for simulation analysis. FACTS technology is incorporated in the existing system in order to enhance capability of the network. To facilitate transfer maximum power in the system, an optimal power-flow-based ATC enhancement model is formulated and presented along with simulation results. Studies based on the IEEE 3-bus system and 14-bus systems with TCSC demonstrate the effectiveness of FACTS control on ATC enhancement.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Bin, Feng Liu, Bingxu Zhai, and Haibo Lan. "Investigating continuous power flow solutions of IEEE 14‐bus system." IEEJ Transactions on Electrical and Electronic Engineering 14, no. 1 (2018): 157–59. http://dx.doi.org/10.1002/tee.22773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Araga, Idris A., and A. E. Airoboman. "Enhancement of voltage stability in an interconnected network using unified power flow controller." Journal of Advances in Science and Engineering 4, no. 1 (2021): 65–74. http://dx.doi.org/10.37121/jase.v4i1.141.

Full text
Abstract:
In this paper, the optimal placement of Unified Power Flow Controllers (UPFC) in a large-scale transmission network in order to improve the loadability margin was considered. In other to achieve this aim, the Line Stability Factor (LQP) as a technique for the optimal location of UPFC in the IEEE 14-bus network and 56-bus Nigerian national grid was adopted. The power injection model for the UPFC was employed to secure improvements in the loading margin of the IEEE 14-bus network and 56-bus Nigerian national grid system. Continuation power flow was used to assess the effect of UPFC on the loadability margin. Steady-state simulations using Power System Analysis Toolbox (PSAT) on MATLAB was applied to determine the effectiveness of placing UPFC between bus 13 and bus 14 in the IEEE 14-bus network and between bus 44 (Ikot-Ekpene) and bus 56 (Odukpani) in the 56-bus Nigerian national grid system. The results showed that the loadability margin increased by 8.52 % after UPFC was optimally placed in the IEEE 14-bus network and increased by 195.5 % after UPFC was optimally placed in the 56-bus Nigerian national grid system. Thus, these enhance the voltage stability of both network and utilizing the network efficiently.
APA, Harvard, Vancouver, ISO, and other styles
9

Chakravorty, J., and J. Saraswat. "Improving Power Flow Capacity of Transmission Lines Using DPFC with a PEM Fuel Cell." Engineering, Technology & Applied Science Research 9, no. 6 (2019): 4883–85. http://dx.doi.org/10.48084/etasr.3155.

Full text
Abstract:
The electrical power system is one complex architecture integrating generation, transmission, distribution, and utilization sections. The exponential increase in power requirements made this system more complex and dynamic. Providing good quality and uninterrupted power has become a challenge. In this respect, FACTS devices are playing a vital role in improving power quality and also in increasing the transmission capacity of lines. In this paper. Distributed Power Flow Controller (DPFC), with a PEM fuel cell, has been used in an IEEE-14 bus system to improve system power flow capacity. The proposed IEEE-14 bus with DPFC has been simulated in MATLAB/SIMULINK. The effects are exhibited and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
10

Adegoke, Samson Ademola, Yanxia Sun, and Zenghui Wang. "Minimization of Active Power Loss Using Enhanced Particle Swarm Optimization." Mathematics 11, no. 17 (2023): 3660. http://dx.doi.org/10.3390/math11173660.

Full text
Abstract:
Identifying the weak buses in power system networks is crucial for planning and operation since most generators operate close to their operating limits, resulting in generator failures. This work aims to identify the critical/weak node and reduce the system’s power loss. The line stability index (Lmn) and fast voltage stability index (FVSI) were used to identify the critical node and lines close to instability in the power system networks. Enhanced particle swarm optimization (EPSO) was chosen because of its ability to communicate with better individuals, making it more efficient to obtain a prominent solution. EPSO and other PSO variants minimized the system’s actual/real losses. Nodes 8 and 14 were identified as the critical nodes of the IEEE 9 and 14 bus systems, respectively. The power loss of the IEEE 9 bus system was reduced from 9.842 MW to 7.543 MW, and for the IEEE 14 bus system, the loss was reduced from 13.775 MW of the base case to 12.253 MW for EPSO. EPSO gives a better active power loss reduction and improves the node’s voltage profile than other PSO variants and algorithms in the literature. This suggests the feasibility and suitability of EPSO to improve the grid voltage quality.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography