Journal articles on the topic 'IGF1R target therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'IGF1R target therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Krieger, Christine C., Susanne Neumann, and Marvin C. Gershengorn. "Is There Evidence for IGF1R-Stimulating Abs in Graves’ Orbitopathy Pathogenesis?" International Journal of Molecular Sciences 21, no. 18 (2020): 6561. http://dx.doi.org/10.3390/ijms21186561.
Full textNoh, MinHye, Jin Muk Kang, Grace Nguyen, et al. "TMIC-58. LEVERAGING VIRO-IMMUNOTHERAPY BY TARGETING IGF2-IGF1R SIGNALING." Neuro-Oncology 26, Supplement_8 (2024): viii311. http://dx.doi.org/10.1093/neuonc/noae165.1236.
Full textOchnik, Aleksandra M., and Robert C. Baxter. "Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer." Endocrine-Related Cancer 23, no. 11 (2016): R527—R550. http://dx.doi.org/10.1530/erc-16-0218.
Full textNoh, Min Hye, Alexandra Miller, Grace Nguyen, et al. "Abstract LB262: Reprogramming the tumor microenvironment by targeting IGF2-IGF1R signaling, enhancing viro-immunotherapy." Cancer Research 84, no. 7_Supplement (2024): LB262. http://dx.doi.org/10.1158/1538-7445.am2024-lb262.
Full textBaar, Courtney, Emily Chiu, Yvette Soignier, et al. "Abstract B040: Trispecific killer engagers against IGF1R and fetal form of insulin receptor induce human natural killer cell mediated killing of hormone receptor positive breast cancer in vitro and in vivo." Cancer Research 84, no. 3_Supplement_1 (2024): B040. http://dx.doi.org/10.1158/1538-7445.advbc23-b040.
Full textYee, Douglas. "40 YEARS OF IGF1: Anti-insulin-like growth factor therapy in breast cancer." Journal of Molecular Endocrinology 61, no. 1 (2018): T61—T68. http://dx.doi.org/10.1530/jme-17-0261.
Full textVewinger, Nadine, Sabrina Huprich, Larissa Seidmann, et al. "IGF1R Is a Potential New Therapeutic Target for HGNET-BCOR Brain Tumor Patients." International Journal of Molecular Sciences 20, no. 12 (2019): 3027. http://dx.doi.org/10.3390/ijms20123027.
Full textBaar, Courtney, Emily Chiu, Yvette Soignier, Jeffrey Miller, Martin Felices, and Deepali Sachdev. "Abstract LB231: IGF1R targeted NK cell engager kills proliferating and quiescent hormone receptor positive breast cancers." Cancer Research 85, no. 8_Supplement_2 (2025): LB231. https://doi.org/10.1158/1538-7445.am2025-lb231.
Full textCorless, C. L., C. Beadling, E. Justusson, and M. C. Heinrich. "Evaluation of the presence of IGF1R overexpression in wild-type and kinase mutant GI stromal tumors." Journal of Clinical Oncology 27, no. 15_suppl (2009): 10506. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.10506.
Full textLima, Keli, and João Agostinho Machado-Neto. "NT157 as an Anticancer Drug Candidate That Targets Kinase- and Phosphatase-Mediated Signaling." Kinases and Phosphatases 2, no. 2 (2024): 179–89. http://dx.doi.org/10.3390/kinasesphosphatases2020011.
Full textJen, Hsin-Wei, De-Leung Gu, Yaw-Dong Lang, and Yuh-Shan Jou. "PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility." Cells 9, no. 6 (2020): 1490. http://dx.doi.org/10.3390/cells9061490.
Full textScheffold, Annika, Billy Michael Chelliah Jebaraj, Eugen Tausch та ін. "IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia". Blood 134, № 6 (2019): 534–47. http://dx.doi.org/10.1182/blood.2018881029.
Full textMedyouf, Hind, Samuel Gusscott, Hongfang Wang, et al. "High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling." Journal of Experimental Medicine 208, no. 9 (2011): 1809–22. http://dx.doi.org/10.1084/jem.20110121.
Full textSubbiah, Vivek, and Pete Anderson. "Targeted Therapy of Ewing's Sarcoma." Sarcoma 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/686985.
Full textChakraborty, Sukanya, Bhopal C. Mohapatra, Sameer Mirza, et al. "Abstract 87: EHD1 is required for IGF1R-mediated oncogenic signaling in Ewing Sarcoma." Cancer Research 82, no. 12_Supplement (2022): 87. http://dx.doi.org/10.1158/1538-7445.am2022-87.
Full textYaktapour, Niuscha, Rudolf Uebelhart, Christine Dierks, et al. "IGF1R Inhibition Induces Apoptosis in Chronic Lymphocytic Leukemia." Blood 120, no. 21 (2012): 3864. http://dx.doi.org/10.1182/blood.v120.21.3864.3864.
Full textGilbert, Judith A., Laura J. Adhikari, Ricardo V. Lloyd, et al. "Molecular markers for novel therapies in neuroendocrine (carcinoid) tumors." Endocrine-Related Cancer 17, no. 3 (2010): 623–36. http://dx.doi.org/10.1677/erc-09-0318.
Full textDziadziuszko, R., D. T. Merrick, S. E. Witta, et al. "Insulin-like growth factor receptor 1 (IGF1R) protein expression, mRNA expression and gene copy number in operable non-small cell lung cancer (NSCLC)." Journal of Clinical Oncology 27, no. 15_suppl (2009): 7524. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.7524.
Full textde Groot, Stefanie, Bas Röttgering, Hans Gelderblom, Hanno Pijl, Karoly Szuhai, and Judith R. Kroep. "Unraveling the Resistance of IGF-Pathway Inhibition in Ewing Sarcoma." Cancers 12, no. 12 (2020): 3568. http://dx.doi.org/10.3390/cancers12123568.
Full textVella, Veronica, Marika Giuliano, Maria Luisa Nicolosi, et al. "DDR1 Affects Metabolic Reprogramming in Breast Cancer Cells by Cross-Talking to the Insulin/IGF System." Biomolecules 11, no. 7 (2021): 926. http://dx.doi.org/10.3390/biom11070926.
Full textBäumer, Nicole, Jessica Tiemann, Annika Scheller, et al. "Targeted siRNA nanocarrier: a platform technology for cancer treatment." Oncogene 41, no. 15 (2022): 2210–24. http://dx.doi.org/10.1038/s41388-022-02241-w.
Full textWang, Daojuan, Xun Tang, Jianguo Ruan, et al. "HSP90AB1 as the Druggable Target of Maggot Extract Reverses Cisplatin Resistance in Ovarian Cancer." Oxidative Medicine and Cellular Longevity 2023 (May 2, 2023): 1–24. http://dx.doi.org/10.1155/2023/9335440.
Full textBesse, Andrej, Tiberiu Totu, Marianne Kraus, et al. "Abstract 4430: Combination of IGF1R/InsR and proteasome inhibition shows strong antitumor activity in proteasome inhibitor resistant multiple myeloma." Cancer Research 85, no. 8_Supplement_1 (2025): 4430. https://doi.org/10.1158/1538-7445.am2025-4430.
Full textSchmidt-Salzmann, Charlotte, Niuscha Yaktapour, Tilman Brummer, Katja Zirlik, and Rainer Claus. "Combined Inhibition of BCR and IGF1R Signaling Leads to Synergistic Apoptosis Induction in Primary CLL Cells in Vitro." Blood 126, no. 23 (2015): 4168. http://dx.doi.org/10.1182/blood.v126.23.4168.4168.
Full textKurimchak, Alison M., Vikas Kumar, Carlos Herrera-Montávez, et al. "Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target." Molecular & Cellular Proteomics 19, no. 12 (2020): 2068–89. http://dx.doi.org/10.1074/mcp.ra120.002012.
Full textTakagi, Satoshi, and Ryohei Katayama. "Abstract 562: Frequent copy number gain of MCL1 is a therapeutic target for osteosarcoma." Cancer Research 84, no. 6_Supplement (2024): 562. http://dx.doi.org/10.1158/1538-7445.am2024-562.
Full textHembrough, Todd A., Wei-Li Liao, Sheeno Thyparambil, Marlene Darfler, David Krizman, and Jon Burrows. "Multiplexed mass spectometic quantitation of HER1-3, cMET, and IGF1R in FFPE tumor samples: Implications for targeted therapy and resistance." Journal of Clinical Oncology 30, no. 15_suppl (2012): e21068-e21068. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.e21068.
Full textMedyouf, Hind, Samuel Gusscott, Carol Wai, et al. "IGF Signaling Is Critical for Growth and Survival of T-Cell Acute Lymphoblastic Leukemia Cells and Is Potentiated by Notch Upregulation of IGF1R." Blood 112, no. 11 (2008): 3811. http://dx.doi.org/10.1182/blood.v112.11.3811.3811.
Full textK, Aswin, and Shabna Roupal Morais. "Unlocking the therapeutic potential of nolatrexed in glioblastoma multiforme through quantum mechanics, network pharmacology, molecular docking and ADMET analysis." Turkish Computational and Theoretical Chemistry 9, no. 2 (2024): 96–110. https://doi.org/10.33435/tcandtc.1518215.
Full textWu, Jie, and Vivek Subbiah. "RETooling the RET Inhibitor Pralsetinib for ESR1 Fusion–Positive Breast Cancer and Beyond." Cancer Research 83, no. 19 (2023): 3159–61. http://dx.doi.org/10.1158/0008-5472.can-23-1021.
Full textGelsomino, Luca, Amanda Caruso, Rocco Malivindi, et al. "Abstract PO3-24-09: May ESR1 mutant breast cancer cells influence fibroblast phenotype?" Cancer Research 84, no. 9_Supplement (2024): PO3–24–09—PO3–24–09. http://dx.doi.org/10.1158/1538-7445.sabcs23-po3-24-09.
Full textYu, Christina, Brian Walker, G. David Roodman, Kun Huang, Michel Sadelain, and Fabiana Perna. "137 Genomics of multiple myeloma influences the expression of CAR T-cell targets." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A150. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0137.
Full textDuan, Lei, Sarah J. Calhoun, Ricardo E. Perez, et al. "Prolylcarboxypeptidase promotes IGF1R/HER3 signaling and is a potential target to improve endocrine therapy response in estrogen receptor positive breast cancer." Cancer Biology & Therapy 23, no. 1 (2022): 1–10. http://dx.doi.org/10.1080/15384047.2022.2142008.
Full textAkoonjee, Ayesha, Athika Rampadarath, Christiana Eleojo Aruwa, Taibat Arinola Ajiboye, Abdulwakeel Ayokun-nun Ajao, and Saheed Sabiu. "Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care." Metabolites 12, no. 11 (2022): 1013. http://dx.doi.org/10.3390/metabo12111013.
Full textMeher, Abinash, Shailly Varma Shrivastav, Anouska Agarwal, Sheen Dube, Stephanie Portet, and Anuraag Shrivastav. "Abstract 7381: Mathematical modeling and validation of mechanistic target of rapamycin and N-myristoyltransferase signaling pathways in breast cancer." Cancer Research 84, no. 6_Supplement (2024): 7381. http://dx.doi.org/10.1158/1538-7445.am2024-7381.
Full textMarrocco, Ilaria, Yuya Haga, and Yosef Yarden. "Abstract 1097: First-line therapy based on kinase inhibitors and antibodies prevents resistance in EGFR-mutated lung cancer." Cancer Research 82, no. 12_Supplement (2022): 1097. http://dx.doi.org/10.1158/1538-7445.am2022-1097.
Full textJavle, Milind M., Rachna T. Shroff, Gauri R. Varadhachary, et al. "Tumor IGF-1 expression as a predictive biomarker for IGF1R-directed therapy in advanced pancreatic cancer (APC)." Journal of Clinical Oncology 30, no. 15_suppl (2012): 4054. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4054.
Full textGatalica, Zoran, Kathleen D. Danenberg, Matthew Jerome McGinniss, et al. "Molecular profiling of uveal melanoma patients." Journal of Clinical Oncology 30, no. 15_suppl (2012): 10630. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.10630.
Full textBresciani, Giulia, Angeliki Ditsiou, Chiara Cilibrasi, et al. "EGF and IGF1 affect sunitinib activity in BP-NEN: new putative targets beyond VEGFR?" Endocrine Connections 8, no. 6 (2019): 680–90. http://dx.doi.org/10.1530/ec-19-0192.
Full textBruckner, Katharina, Daniela Lötsch-Gojo, Lisa Gabler, et al. "ETMR-19.BCOR/L1-ALTERATIONS REWIRE HISTONE REGULATION TO INDUCE ONCOGENIC PATHWAYS IN PEDIATRIC CENTRAL NERVOUS SYSTEM TUMORS." Neuro-Oncology 26, Supplement_4 (2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.189.
Full textSarfstein, Rive, Karthik Nagaraj, Derek LeRoith, and Haim Werner. "Differential Effects of Insulin and IGF1 Receptors on ERK and AKT Subcellular Distribution in Breast Cancer Cells." Cells 8, no. 12 (2019): 1499. http://dx.doi.org/10.3390/cells8121499.
Full textGuzmán-Flores, Juan Manuel, Fernando Martínez-Esquivias, Antistio Alviz-Amador, Guadalupe Thonanzyn Avilés-Rodríguez, and Michel Fabricio García-Azuela. "Exploring Cannabidiol’s Therapeutic Role in Colorectal Cancer: Network Pharmacology and Molecular Docking Insights." Scientia Pharmaceutica 93, no. 1 (2025): 12. https://doi.org/10.3390/scipharm93010012.
Full textPetrelli, Annalisa, Sara Erika Bellomo, Ivana Sarotto, et al. "MiR-100 is a predictor of endocrine responsiveness and prognosis in patients with operable luminal breast cancer." ESMO Open 5, no. 5 (2020): e000937. http://dx.doi.org/10.1136/esmoopen-2020-000937.
Full textVenkataramanan, Sridhanya, Rajeshwari V Kamat, and Sanjay Ugare. "Molecular Mechanism of Nishamalaki as Rasayana in Diabetes Mellitus." International Journal of Ayurvedic Medicine 15, no. 2 (2024): 375–82. http://dx.doi.org/10.47552/ijam.v15i2.4552.
Full textHuizer, Karin, Andrea Sacchetti, Sigrid Swagemakers, Peter van der Spek, Dana Mustafa, and Johan M. Kros. "TAMI-10. CIRCULATING ANGIOGENIC CELLS (CACS) IN GLIOBLASTOMA: TOWARDS DEFINING CRUCIAL FUNCTIONAL DIFFERENCES IN CAC-INDUCED NEOPLASTIC VERSUS REACTIVE NEOVASCULARIZATION." Neuro-Oncology 22, Supplement_2 (2020): ii215. http://dx.doi.org/10.1093/neuonc/noaa215.899.
Full textThyparambil, Sheeno P., Wei-Li Liao, Amanda Strasbaugh, et al. "Personalized therapy for head and neck squamous carcinoma (HNSCC) utilizing tissue proteomics profiling." Journal of Clinical Oncology 41, no. 16_suppl (2023): 6045. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.6045.
Full textDe Velasco, Marco A., Yurie Kura, Naomi Ando, et al. "Abstract 5211: Therapeutic resistance to anti-AR signal pathway therapies is related to compensatory pathway activation and immune suppression in mouse Pten/Trp53-deficient CRPC." Cancer Research 82, no. 12_Supplement (2022): 5211. http://dx.doi.org/10.1158/1538-7445.am2022-5211.
Full textScheffold, Annika, Billy Michael Chelliah Jebaraj, Eugen Tausch та ін. "In Vivo modeling of Resistance to PI3Kδ Inhibitor Treatment Using EµTCL1-Tg Tumor Transfer Model". Blood 128, № 22 (2016): 190. http://dx.doi.org/10.1182/blood.v128.22.190.190.
Full textThyparambil, Sheeno P., Wei-Li Liao, Eunkyung An, et al. "Proteomic profiling to identify therapeutics targets in glioblastoma (GBM)." Journal of Clinical Oncology 38, no. 15_suppl (2020): 2555. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.2555.
Full textOsuka, Satoru, Dan Zhu, Zhaobin Zhang, et al. "Abstract 1430: N-cadherin is a driver of adaptive radioresistance in malignant brain tumors." Cancer Research 82, no. 12_Supplement (2022): 1430. http://dx.doi.org/10.1158/1538-7445.am2022-1430.
Full text