To see the other types of publications on this topic, follow the link: II-VI alloys.

Journal articles on the topic 'II-VI alloys'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'II-VI alloys.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Myles, Charles W. "Microhardness of Hg-containing II–VI alloys." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 4 (1992): 1454. http://dx.doi.org/10.1116/1.586271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Xinyu, and J. K. Furdyna. "Optical dispersion of ternary II–VI semiconductor alloys." Journal of Applied Physics 95, no. 12 (2004): 7754–64. http://dx.doi.org/10.1063/1.1739291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perkowitz, S., L. S. Kim, and P. Becla. "Infrared bond ionicity in ternary II–VI alloys." Solid State Communications 77, no. 6 (1991): 471–74. http://dx.doi.org/10.1016/0038-1098(91)90239-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chu, T. L., S. S. Chu, C. Ferekides, et al. "Thin films of II–VI compounds and alloys." Solar Cells 30, no. 1-4 (1991): 123–30. http://dx.doi.org/10.1016/0379-6787(91)90044-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jaroszyński, J., T. Andrearczyk, G. Karczewski, et al. "Quantum Hall ferromagnetism in II–VI based alloys." physica status solidi (b) 241, no. 3 (2004): 712–17. http://dx.doi.org/10.1002/pssb.200304293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zhihai, Bruce A. Bunker, Robert A. Mayanovic, Ursula Debska, and Jacek K. Furdyna. "Lattice Distortion and Ferroelectricity in IV-VI and II-VI Semiconductor Alloys." Japanese Journal of Applied Physics 32, S2 (1993): 673. http://dx.doi.org/10.7567/jjaps.32s2.673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

v. Wensierski, H. "Ordering and diffusion in II-VI/III-VI alloys with structural vacancies." Solid State Ionics 101-103, no. 1-2 (1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)00145-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wensierski, H. v., D. Weitze, and V. Leute. "Ordering and diffusion in II–VI/III–VI alloys with structural vacancies." Solid State Ionics 101-103 (November 1997): 479–87. http://dx.doi.org/10.1016/s0167-2738(97)84072-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zamir, D., K. Beshah, P. Becla, et al. "Nuclear magnetic resonance studies of II–VI semiconductor alloys." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, no. 4 (1988): 2612–13. http://dx.doi.org/10.1116/1.575516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berding, M. A., S. Krishnamurthy, A. Sher, and A. B. Chen. "Ballistic transport in II–VI semiconductor compounds and alloys." Journal of Crystal Growth 86, no. 1-4 (1988): 33–38. http://dx.doi.org/10.1016/0022-0248(90)90695-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Balzarotti, A. "Lattice distortions around atomic substitutions in II–VI alloys." Physica B+C 146, no. 1-2 (1987): 150–75. http://dx.doi.org/10.1016/0378-4363(87)90059-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shakhmin, Alexey A., Irina V. Sedova, Sergey V. Sorokin, Hans-Joachim Fitting, and Maria V. Zamoryanskaya. "Cathodoluminescence of wide-band-gap II-VI quaternary alloys." physica status solidi (c) 7, no. 6 (2010): 1457–59. http://dx.doi.org/10.1002/pssc.200983278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Price, M. W., H. Zuo, G. M. Janowsk, and R. N. Andrews. "Compositional analysis of mercury zinc telluride by EDS and WDS." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 748–49. http://dx.doi.org/10.1017/s0424820100088051.

Full text
Abstract:
Semiconducting alloys of II-VI compounds have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities in II-VI materials can adversely affect device performance. Extensive work has been conducted to evaluate the influence of growth parameters on the compositional redistribution in directionally solidified bulk alloys. Energy Dispersive Spectroscopy (EDS) has proven to be a valuable tool both in evaluating the compositional homogeneity of II-VI alloys and gaining information about the influence of growth parameters on compositional red
APA, Harvard, Vancouver, ISO, and other styles
14

Lu, Junpeng, Hongwei Liu, Xinhai Zhang, and Chorng Haur Sow. "One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications." Nanoscale 10, no. 37 (2018): 17456–76. http://dx.doi.org/10.1039/c8nr05019h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jafarov, M. A., E. F. Nasirov, and S. A. Mamedova. "Negative photoconductivity in films of alloys of II–VI compounds." Semiconductors 48, no. 5 (2014): 570–76. http://dx.doi.org/10.1134/s1063782614050066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yu, K. M., W. Shan, O. D. Dubon, et al. "Synthesis and properties of highly mismatched II–O–VI alloys." IEE Proceedings - Optoelectronics 151, no. 5 (2004): 452–59. http://dx.doi.org/10.1049/ip-opt:20040932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Miller, D. J., and A. K. Koh. "Electron paramagnetic resonance of Mn2+ in II–VI semiconductor alloys." Journal of Physics and Chemistry of Solids 55, no. 2 (1994): 153–59. http://dx.doi.org/10.1016/0022-3697(94)90072-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yu, K. M., J. Wu, W. Walukiewicz, et al. "Band anticrossing in highly mismatched group II-VI semiconductor alloys." Journal of Electronic Materials 31, no. 7 (2002): 754–58. http://dx.doi.org/10.1007/s11664-002-0232-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aydinli, Atilla, and Alvin D. Compaan. "Pulsed laser deposition of some II-VI compounds and alloys." Advanced Materials for Optics and Electronics 2, no. 1-2 (1993): 79–86. http://dx.doi.org/10.1002/amo.860020110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ekpenuma, Sylvester N., and Charles W. Myles. "Structural stability of Zn‐containing II–VI semiconductor alloys: Microhardness calculations." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 1 (1992): 208–16. http://dx.doi.org/10.1116/1.578138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yu, K. M., W. Walukiewicz, W. Shan, et al. "Synthesis and optical properties of II-O-VI highly mismatched alloys." Journal of Applied Physics 95, no. 11 (2004): 6232–38. http://dx.doi.org/10.1063/1.1713021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kisker, D. W. "Issues in the OMVPE growth of II–VI alloys for optoelectronics." Journal of Crystal Growth 98, no. 1-2 (1989): 127–39. http://dx.doi.org/10.1016/0022-0248(89)90193-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vodopyanov, L. K. "Optical studies of II–VI alloy lattice dynamics." Journal of Alloys and Compounds 371, no. 1-2 (2004): 72–76. http://dx.doi.org/10.1016/j.jallcom.2003.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ohtani, H., K. Kojima, K. Ishida, and T. Nishizawa. "Miscibility gap in II–VI alloy semiconductor systems." Journal of Alloys and Compounds 182, no. 1 (1992): 103–14. http://dx.doi.org/10.1016/0925-8388(92)90579-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wolverson, D., J. J. Davies, C. L. Orange, et al. "Spin-flip Raman scattering of wide-band-gap II-VI ternary alloys." Physical Review B 60, no. 19 (1999): 13555–60. http://dx.doi.org/10.1103/physrevb.60.13555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Eason, D. B., Z. Yu, C. Boney, et al. "Quaternary II–VI alloys for blue and green light emitting diode applications." Journal of Crystal Growth 138, no. 1-4 (1994): 709–13. http://dx.doi.org/10.1016/0022-0248(94)90895-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rajeshwar, Krishnan. "Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures." Advanced Materials 4, no. 1 (1992): 23–29. http://dx.doi.org/10.1002/adma.19920040104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Malyshev, Victor, Angelina Gab, Arvydas Survila, et al. "Electroplating of Co-W and Co-Mo Alloys from Na2WO4 Ionic Melts." Revista de Chimie 70, no. 3 (2019): 871–74. http://dx.doi.org/10.37358/rc.19.3.7023.

Full text
Abstract:
The cathodic reduction processes of cobalt (II), tungsten (VI) and molybdenum (VI) in Na2WO4 melts are discussed. Electrochemical behavior of cobalt in a tungstate melt, as well as the effect of electrolysis conditions on the composition and structure of Co-W and Co-Mo alloys deposits from tungstate-molybdate melts is also studied. With a decrease in the concentration of cobalt ions and an increase in the concentration of molybdenum (tungsten) ions in the melt, the phase composition of cathodic deposits is shown to change from individual cobalt to individual molybdenum (tungsten) via a series
APA, Harvard, Vancouver, ISO, and other styles
29

Vasil’ev, V. P. "Correlations between the thermodynamic properties of II–VI and III–VI phases." Inorganic Materials 43, no. 2 (2007): 115–24. http://dx.doi.org/10.1134/s0020168507020045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sastry, Mylavarapu S., and Suryakant S. Gupta. "Homonuclear molybdenum(VI) and heteronuclear molybdenum(VI) copper(II) peroxo complexes containing amino acids." Transition Metal Chemistry 21, no. 5 (1996): 410–12. http://dx.doi.org/10.1007/bf00140781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

El-Asmy, Ahmed A., Mohamed A. Morsi, and Alaa A. El-Shafei. "Cobalt(II), nickel(II), copper(II), zinc(II) and uranyl(VI) complexes of acetylacetone bis(4-phenylthiosemicarbazone)." Transition Metal Chemistry 11, no. 12 (1986): 494–96. http://dx.doi.org/10.1007/bf01386886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Full text
Abstract:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible
APA, Harvard, Vancouver, ISO, and other styles
33

Mannodi-Kanakkithodi, Arun. "A first principles investigation of ternary and quaternary II–VI zincblende semiconductor alloys." Modelling and Simulation in Materials Science and Engineering 30, no. 4 (2022): 044001. http://dx.doi.org/10.1088/1361-651x/ac59d8.

Full text
Abstract:
Abstract One of the most common ways of tuning the stability, electronic structure, and optical behavior of semiconductors is via composition engineering. By mixing multiple isovalent elements at any cation or anion site, new compositions may be generated with markedly different properties than end-point compositions, and not always lying within a predictable trend. In this work, we explore the trends in lattice constant, electronic band gap, formation and mixing energy, and optical absorption behavior in a series of II–VI zincblende semiconductors with Cd/Zn at the cation site and S/Se/Te at
APA, Harvard, Vancouver, ISO, and other styles
34

Wei, Su‐Huai, and Alex Zunger. "Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys." Journal of Applied Physics 78, no. 6 (1995): 3846–56. http://dx.doi.org/10.1063/1.359901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mirsagatov, Sh A., O. K. Ataboev, B. N. Zaveryukhin, and Zh T. Nazarov. "Photoelectric properties of an injection photodetector based on alloys of II–VI compounds." Semiconductors 48, no. 3 (2014): 354–59. http://dx.doi.org/10.1134/s1063782614030178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Neff, H., K. Y. Lay, M. S. Su, P. Lange, and K. J. Bachmann. "Sputter induced near surface electronic defects in group II–VI compound semiconductor alloys." Surface Science 189-190 (October 1987): 661–68. http://dx.doi.org/10.1016/s0039-6028(87)80496-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tit, Nacir, Ihab M. Obaidat, and Hussain Alawadhi. "Absence of the bowing character in the common-anion II–VI ternary alloys." Journal of Alloys and Compounds 481, no. 1-2 (2009): 340–44. http://dx.doi.org/10.1016/j.jallcom.2009.02.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Peiris, F. C., U. Bindley, and J. K. Furdyna. "Optical properties of molecular beam epitaxy-grown ZnSexTe1−x II–VI semiconductor alloys." Journal of Electronic Materials 30, no. 6 (2001): 677–81. http://dx.doi.org/10.1007/bf02665855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Oh, Eunsoon, and A. K. Ramdas. "Multi-Mode behavior of optical phonons in II-VI ternary and quaternary alloys." Journal of Electronic Materials 23, no. 3 (1994): 307–12. http://dx.doi.org/10.1007/bf02670640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berkem, Alphan, Peter Quaye, Nafiseh Amiri, and Stanko Brankovic. "Pulse Electrodeposition of High Moment-High Resistivity Cofex (X=P, O) Alloys and Multilayers for Inductor Application." ECS Meeting Abstracts MA2023-02, no. 26 (2023): 1401. http://dx.doi.org/10.1149/ma2023-02261401mtgabs.

Full text
Abstract:
Growing application of magnetic thin films and inductor chips for analog circuits in mobile phones, MEMS and defense sector technologies rise the need for development of new allows with low energy losses to serve as core material during electromagnetic induction process. Electrodeposition is a cost effective approach to achieve this. The new alloys and their electrodeposition/synthesis process foresee an immediate and direct implementation in future product designs and development and can be easily integrated in an existing manufacturing schemes. The presented work leverages earlier results re
APA, Harvard, Vancouver, ISO, and other styles
41

Ghoneim, A. A., M. A. Ameer, A. M. Fekry, and F. El-Taib Heakal. "Cyclic Voltammetric Studies on Selected Tin-Silver Binary Alloys in Sodium Hydroxide Solution." Corrosion 66, no. 11 (2010): 115001–115001. http://dx.doi.org/10.5006/1.3516488.

Full text
Abstract:
Abstract The electrochemical corrosion and passivation behavior of four selected tin-silver alloys, xSn-Ag (x = 26, 50, 70, and 96.5 wt%) (II through V), in addition to their pure metallic components, Ag(I) and Sn(VI), were investigated in aqueous sodium hydroxide (NaOH) solution. The techniques used are linear sweep cyclic voltammetry and electrochemical impedance spectroscopy (EIS). In general, for all studied samples, the cyclic voltammograms show that increasing the scan rate shifts the passivation peak potential (Ep,a) positively and the reduction peak potential (Ep,c) negatively with a c
APA, Harvard, Vancouver, ISO, and other styles
42

Cekerevac, Milan, Ljiljana Nikolic-Bujanovic, and Milos Simicic. "Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions." Chemical Industry 63, no. 5 (2009): 387–95. http://dx.doi.org/10.2298/hemind0905387c.

Full text
Abstract:
In recent years, considerable attention has been paid to various applications of Fe(VI) due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI) has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI) has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the
APA, Harvard, Vancouver, ISO, and other styles
43

Syamal, Arun, and Mannar Ram Maurya. "Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide." Transition Metal Chemistry 11, no. 5 (1986): 172–76. http://dx.doi.org/10.1007/bf01064251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov, and A. A. Pankratov. "Electroreduction of Nickel(II) Chloride, Cobalt(II) Fluoride, and Molybdenum(VI) Oxide Mixtures in a Heat Activated Battery." Russian Metallurgy (Metally) 2023, no. 8 (2023): 1122–28. http://dx.doi.org/10.1134/s0036029523080311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Volkova, O. V., V. V. Zakharov, S. V. Pershina, B. D. Antonov, and A. A. Pankratov. "ELECTROREDUCTION OF NICKEL(II) CHLORIDE, COBALT(II) FLUORIDE AND MOLYBDENUM(VI) OXIDE MIXTURES IN A HEAT ACTIVATED BATTERY." Расплавы, no. 5 (September 1, 2023): 540–49. http://dx.doi.org/10.31857/s0235010623050110.

Full text
Abstract:
The discharge characteristics of the elements of a thermally activated chemical current source (HAB) containing NiCl2–CoF2–MoO3 mixtures as a positive electrode are investigated. It is established that molybdenum oxide stabilizes the discharge plateau and increases the discharge voltage at temperatures above 530°C. The discharge curve has a stepwise character. The number of steps of the discharge curve is determined by the operating conditions of HAB. The low-voltage stage (less than 0.4 V) corresponds to the reduction of lithium molybdates, which are formed by the interaction of molybdenum ox
APA, Harvard, Vancouver, ISO, and other styles
46

Barlow, D. A. "Predicting the temperature for the solid–solid phase transition in II–VI semiconductor alloys." Journal of Physics and Chemistry of Solids 74, no. 3 (2013): 406–9. http://dx.doi.org/10.1016/j.jpcs.2012.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Moug, R., C. Bradford, A. Curran, et al. "Development of an epitaxial lift-off technology for II–VI nanostructures using ZnMgSSe alloys." Microelectronics Journal 40, no. 3 (2009): 530–32. http://dx.doi.org/10.1016/j.mejo.2008.06.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vèrié, C. "Beryllium substitution-mediated covalency engineering of II-VI alloys for lattice elastic rigidity reinforcement." Journal of Crystal Growth 184-185, no. 1-2 (1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(97)00775-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Vèrié, C. "Beryllium substitution-mediated covalency engineering of II–VI alloys for lattice elastic rigidity reinforcement." Journal of Crystal Growth 184-185 (February 1998): 1061–66. http://dx.doi.org/10.1016/s0022-0248(98)80222-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Turkdogan, Sunay. "Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM." Journal of Materials Science: Materials in Electronics 30, no. 11 (2019): 10427–34. http://dx.doi.org/10.1007/s10854-019-01384-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!