Journal articles on the topic 'III-V nanostructure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'III-V nanostructure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Florini, Nikoletta, George P. Dimitrakopulos, Joseph Kioseoglou, Nikos T. Pelekanos, and Thomas Kehagias. "Strain field determination in III–V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale." Journal of the Mechanical Behavior of Materials 26, no. 1-2 (2017): 1–8. http://dx.doi.org/10.1515/jmbm-2017-0009.
Full textPantle, Florian, Monika Karlinger, Simon Wörle, et al. "Crystal side facet-tuning of GaN nanowires and nanofins grown by molecular beam epitaxy." Journal of Applied Physics 132, no. 18 (2022): 184304. http://dx.doi.org/10.1063/5.0098016.
Full textBabicheva, Viktoriia E. "Transition Metal Dichalcogenide Nanoantennas Lattice." MRS Advances 4, no. 41-42 (2019): 2283–88. http://dx.doi.org/10.1557/adv.2019.357.
Full textIshikawa, Tomonori, Shigeru Kohmoto, Tetsuya Nishimura, and Kiyoshi Asakawa. "In situ electron-beam processing for III–V semiconductor nanostructure fabrication." Thin Solid Films 373, no. 1-2 (2000): 170–75. http://dx.doi.org/10.1016/s0040-6090(00)01128-7.
Full textMagno, R., and B. R. Bennett. "Nanostructure patterns written in III–V semiconductors by an atomic force microscope." Applied Physics Letters 70, no. 14 (1997): 1855–57. http://dx.doi.org/10.1063/1.118712.
Full textZhang, Jiarui, and Chi Ma. "Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors." Nanomaterials 15, no. 11 (2025): 816. https://doi.org/10.3390/nano15110816.
Full textKang, M., J. H. Wu, S. Huang, et al. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces." Applied Physics Letters 101, no. 8 (2012): 082101. http://dx.doi.org/10.1063/1.4742863.
Full textBoroditsky, M., I. Gontijo, M. Jackson, et al. "Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes." Journal of Applied Physics 87, no. 7 (2000): 3497–504. http://dx.doi.org/10.1063/1.372372.
Full textAbd-Elkader, Omar H., Abdullah M. Al-Enizi, Shoyebmohamad F. Shaikh, Mohd Ubaidullah, Mohamed O. Abdelkader, and Nasser Y. Mostafa. "Enhancing the Liquefied Petroleum Gas Sensing Sensitivity of Mn-Ferrite with Vanadium Doping." Processes 10, no. 10 (2022): 2012. http://dx.doi.org/10.3390/pr10102012.
Full textYuan, Xiaoming, Dong Pan, Yijin Zhou, et al. "Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions." Applied Physics Reviews 8, no. 2 (2021): 021302. http://dx.doi.org/10.1063/5.0044706.
Full textCui, Jie, Masashi Ozeki, and Masafumi Ohashi. "Dynamic behavior of group III and V organometallic sources and nanostructure fabrication by supersonic molecular beams." Journal of Crystal Growth 209, no. 2-3 (2000): 492–98. http://dx.doi.org/10.1016/s0022-0248(99)00604-1.
Full textTorres-Jaramillo, Santiago, Camilo Pulzara-Mora, Roberto Bernal-Correa, et al. "Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering." Universitas Scientiarum 24, no. 3 (2019): 523–42. http://dx.doi.org/10.11144/javeriana.sc24-3.saos.
Full textFloris, Francesco, Lucia Fornasari, Vittorio Bellani, et al. "Strong Modulations of Optical Reflectance in Tapered Core–Shell Nanowires." Materials 12, no. 21 (2019): 3572. http://dx.doi.org/10.3390/ma12213572.
Full textWang, Lifeng, Juha Song, Christine Ortiz, and Mary C. Boyce. "Anisotropic design of a multilayered biological exoskeleton." Journal of Materials Research 24, no. 12 (2009): 3477–94. http://dx.doi.org/10.1557/jmr.2009.0443.
Full textAVİNÇ AKPINAR, İclal. "Effect of chemical oxidation process on adhesive performance in two component adhesive with nano particle and nano fiber additives." European Mechanical Science 8, no. 1 (2024): 29–37. http://dx.doi.org/10.26701/ems.1385552.
Full textGupta, Kaushik, Tina Basu, and Uday Chand Ghosh. "Sorption Characteristics of Arsenic(V) for Removal from Water Using Agglomerated Nanostructure Iron(III)−Zirconium(IV) Bimetal Mixed Oxide." Journal of Chemical & Engineering Data 54, no. 8 (2009): 2222–28. http://dx.doi.org/10.1021/je900282m.
Full textMaliakkal, Carina B., Daniel Jacobsson, Marcus Tornberg, and Kimberly A. Dick. "Post-nucleation evolution of the liquid–solid interface in nanowire growth." Nanotechnology 33, no. 10 (2021): 105607. http://dx.doi.org/10.1088/1361-6528/ac3e8d.
Full textKurowski, Ludovic, Dorothée Bernard, Eugène Constant, and Didier Decoster. "Electron-beam-induced reactivation of Si dopants in hydrogenated two-dimensional AlGaAs heterostructures: a possible new route for III–V nanostructure fabrication." Journal of Physics: Condensed Matter 16, no. 2 (2003): S127—S132. http://dx.doi.org/10.1088/0953-8984/16/2/015.
Full textMukherjee, K., C. De Santi, S. You, et al. "Study and characterization of GaN MOS capacitors: Planar vs trench topographies." Applied Physics Letters 120, no. 14 (2022): 143501. http://dx.doi.org/10.1063/5.0087245.
Full textHuang, Y. Q., V. Polojärvi, S. Hiura, et al. "(Invited) Quest for Fully Spin and Optically Polarized Semiconductor Nanostructures for Room-Temperature Opto-Spintronics." ECS Meeting Abstracts MA2023-02, no. 34 (2023): 1666. http://dx.doi.org/10.1149/ma2023-02341666mtgabs.
Full textTan, Hoe. "(Invited) Shape Engineering of Nanostructured III-V Semiconductor Lasers." ECS Meeting Abstracts MA2024-01, no. 22 (2024): 1329. http://dx.doi.org/10.1149/ma2024-01221329mtgabs.
Full textDubrovskii V. G. and Leshchenko E. D. "Criterion for the growth selectivity of III-V and III-N nanowires on masked substrates." Technical Physics Letters 48, no. 11 (2022): 45. http://dx.doi.org/10.21883/tpl.2022.11.54889.19350.
Full textДубровский, В. Г., та Е. Д. Лещенко. "Критерий селективного роста III-V и III-N нитевидных нанокристаллов на маскированных подложках". Письма в журнал технической физики 48, № 22 (2022): 7. http://dx.doi.org/10.21883/pjtf.2022.22.53798.19350.
Full textDubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors." Technical Physics Letters 49, no. 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.
Full textReznik, R. R., K. P. Kotlyar, A. I. Khrebtov, and G. E. Cirlin. "Features of the MBE growth of nanowires with quantum dots on the silicon surface." Journal of Physics: Conference Series 2086, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1742-6596/2086/1/012032.
Full textДубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V". Письма в журнал технической физики 49, № 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.
Full textReznik, R. R., K. P. Kotlyar, V. O. Gridchin, et al. "III-V nanostructures with different dimensionality on silicon." Journal of Physics: Conference Series 2103, no. 1 (2021): 012121. http://dx.doi.org/10.1088/1742-6596/2103/1/012121.
Full textMynbaev, K. D., A. V. Shilyaev, A. A. Semakova, E. V. Bykhanova, and N. L. Bazhenov. "Luminescence of II–VI and III–V nanostructures." Opto-Electronics Review 25, no. 3 (2017): 209–14. http://dx.doi.org/10.1016/j.opelre.2017.06.005.
Full textTakei, Kuniharu, Rehan Kapadia, Yongjun Li, E. Plis, Sanjay Krishna, and Ali Javey. "Surface Charge Transfer Doping of III–V Nanostructures." Journal of Physical Chemistry C 117, no. 34 (2013): 17845–49. http://dx.doi.org/10.1021/jp406174r.
Full textAlonso-González, P., L. González, D. Fuster, J. Martín-Sánchez, and Yolanda González. "Surface Localization of Buried III–V Semiconductor Nanostructures." Nanoscale Research Letters 4, no. 8 (2009): 873–77. http://dx.doi.org/10.1007/s11671-009-9329-3.
Full textCoelho, J., G. Patriarche, F. Glas, G. Saint-Girons, and I. Sagnes. "Stress-driven self-ordering of III–V nanostructures." Journal of Crystal Growth 275, no. 1-2 (2005): e2245-e2249. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.359.
Full textJohn Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Full textKOUJI, Kensuke, YouKey MATSUNAGA, and Kyozaburo TAKEDA. "Electronic and Molecular Structures of III-V Hetero-Nanostructures." Journal of Computer Chemistry, Japan 16, no. 5 (2017): 149–51. http://dx.doi.org/10.2477/jccj.2017-0060.
Full textCipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.
Full textReinhardt, F., B. Dwir, G. Biasiol, and E. Kapon. "Atomic force microscopy of III–V nanostructures in air." Applied Surface Science 104-105 (September 1996): 529–38. http://dx.doi.org/10.1016/s0169-4332(96)00198-5.
Full textAlvarado, S. F. "Luminescence in scanning tunneling microscopy on III–V nanostructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9, no. 2 (1991): 409. http://dx.doi.org/10.1116/1.585582.
Full textMONAICO, Eduard V. "MICRO- AND NANO-ENGINEERING OF SEMICONDUCTOR COMPOUNDS AND METAL STRUCTURES BASED ON ELECTROCHEMICAL TECHNOLOGIES." Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 9, no. 1 (2024): 85–107. http://dx.doi.org/10.56082/annalsarsciphyschem.2024.1.85.
Full textZhang, Leilei, Xing Li, Shaobo Cheng, and Chongxin Shan. "Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures." Materials 15, no. 5 (2022): 1917. http://dx.doi.org/10.3390/ma15051917.
Full textVladimirova, E. V., O. I. Gyrdasova, and A. V. Dmitriev. "Synthesis of nanostructured hollow microspheres of vanadium (III, V) oxides." Nanosystems: Physics, Chemistry, Mathematics 11, no. 5 (2020): 572–77. http://dx.doi.org/10.17586/2220-8054-2020-11-5-572-577.
Full textFleischer, K., G. Bussetti, C. Goletti, W. Richter, and P. Chiaradia. "Optical anisotropy of Cs nanostructures on III–V(110) surfaces." Journal of Physics: Condensed Matter 16, no. 39 (2004): S4353—S4365. http://dx.doi.org/10.1088/0953-8984/16/39/010.
Full textJenichen, B. "X-ray investigations of III–V compounds: layers, nanostructures, surfaces." Materials Science and Engineering: B 80, no. 1-3 (2001): 81–86. http://dx.doi.org/10.1016/s0921-5107(00)00594-8.
Full textPatsha, Avinash, Kishore K. Madapu, and S. Dhara. "Raman Spectral Mapping of III–V Nitride and Graphene Nanostructures." MAPAN 28, no. 4 (2013): 279–83. http://dx.doi.org/10.1007/s12647-013-0082-9.
Full textCoelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Stress-engineered orderings of self-assembled III-V semiconductor nanostructures." physica status solidi (c) 2, no. 4 (2005): 1245–50. http://dx.doi.org/10.1002/pssc.200460413.
Full textTan, Chee Leong, and Hooman Mohseni. "Emerging technologies for high performance infrared detectors." Nanophotonics 7, no. 1 (2018): 169–97. http://dx.doi.org/10.1515/nanoph-2017-0061.
Full textReznik R. R., Gridchin V. O., Kotlyar K. P., et al. "Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy." Semiconductors 56, no. 7 (2022): 492. http://dx.doi.org/10.21883/sc.2022.07.54653.16.
Full textZiembicki, Jakub, Paweł Scharoch, Maciej P. Polak, Michał Wiśniewski, and Robert Kudrawiec. "Band parameters of group III–V semiconductors in wurtzite structure." Journal of Applied Physics 132, no. 22 (2022): 225701. http://dx.doi.org/10.1063/5.0132109.
Full textSanchez, A. M., A. M. Beltran, R. Beanland, et al. "Blocking of indium incorporation by antimony in III–V-Sb nanostructures." Nanotechnology 21, no. 14 (2010): 145606. http://dx.doi.org/10.1088/0957-4484/21/14/145606.
Full textSilveira, J. P., J. M. Garcia, and F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures." Journal of Crystal Growth 227-228 (July 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.
Full textBenyoucef, M., M. Usman, T. Alzoubi, and J. P. Reithmaier. "Pre-patterned silicon substrates for the growth of III-V nanostructures." physica status solidi (a) 209, no. 12 (2012): 2402–10. http://dx.doi.org/10.1002/pssa.201228367.
Full textSmirnov, Aliaksandr, Andrei Stsiapanau, Kirill Korsak, et al. "3‐2: Invited Paper: Monolithic integration of a superhigh resolution LED matrix with a Si addressing chip." SID Symposium Digest of Technical Papers 56, S1 (2025): 27–29. https://doi.org/10.1002/sdtp.18713.
Full text