Academic literature on the topic 'Image Captioning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Image Captioning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Image Captioning"
Vasudha Bahl and Nidhi Sengar, Gaurav Joshi, Dr Amita Goel. "Image Captioning System." International Journal for Modern Trends in Science and Technology 6, no. 12 (December 4, 2020): 40–44. http://dx.doi.org/10.46501/ijmtst061208.
Full textBeddiar, Djamila Romaissa, Mourad Oussalah, Tapio Seppänen, and Rachid Jennane. "ACapMed: Automatic Captioning for Medical Imaging." Applied Sciences 12, no. 21 (November 1, 2022): 11092. http://dx.doi.org/10.3390/app122111092.
Full textMukund Upadhyay and Prof. Shallu Bashambu. "Image captioning Bot." International Journal for Modern Trends in Science and Technology 6, no. 12 (December 15, 2020): 348–54. http://dx.doi.org/10.46501/ijmtst061265.
Full textRasha Mohammed Mualla, Jafar Alkheir, Samer Sulaiman, Rasha Mohammed Mualla, Jafar Alkheir, Samer Sulaiman. "Improving The Performance of the Image Captioning Systems Using a Pre- Classification Stage: تحسين أداء أنظمة وصف الصور باستخدام مرحلة التصنيف المسبق للصور." Journal of engineering sciences and information technology 6, no. 1 (March 27, 2022): 150–64. http://dx.doi.org/10.26389/ajsrp.l270721.
Full textYang, Zhenyu, Qiao Liu, and Guojing Liu. "Better Understanding: Stylized Image Captioning with Style Attention and Adversarial Training." Symmetry 12, no. 12 (November 30, 2020): 1978. http://dx.doi.org/10.3390/sym12121978.
Full textNivedita, M., and Asnath Victy Phamila Y. "Image Captioning for Spatially Rotated Images in Video Surveillance Applications Using Neural Networks." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 29, Supp02 (December 2021): 193–209. http://dx.doi.org/10.1142/s0218488521400110.
Full textIwamura, Kiyohiko, Jun Younes Louhi Kasahara, Alessandro Moro, Atsushi Yamashita, and Hajime Asama. "Image Captioning Using Motion-CNN with Object Detection." Sensors 21, no. 4 (February 10, 2021): 1270. http://dx.doi.org/10.3390/s21041270.
Full textJunaid, Mohd Wasiuddin. "Image Captioning with Face Recognition using Transformers." International Journal for Research in Applied Science and Engineering Technology 10, no. 1 (January 31, 2022): 1426–32. http://dx.doi.org/10.22214/ijraset.2022.40057.
Full textAl-Malla, Muhammad Abdelhadie, Muhammad Abdelhadie Al-Malla, Assef Jafar, and Nada Ghneim. "Pre-trained CNNs as Feature-Extraction Modules for Image Captioning." ELCVIA Electronic Letters on Computer Vision and Image Analysis 21, no. 1 (May 10, 2022): 1–16. http://dx.doi.org/10.5565/rev/elcvia.1436.
Full textChang, Yeong-Hwa, Yen-Jen Chen, Ren-Hung Huang, and Yi-Ting Yu. "Enhanced Image Captioning with Color Recognition Using Deep Learning Methods." Applied Sciences 12, no. 1 (December 26, 2021): 209. http://dx.doi.org/10.3390/app12010209.
Full textDissertations / Theses on the topic "Image Captioning"
Hoxha, Genc. "IMAGE CAPTIONING FOR REMOTE SENSING IMAGE ANALYSIS." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/351752.
Full textHossain, Md Zakir. "Deep learning techniques for image captioning." Thesis, Hossain, Md. Zakir (2020) Deep learning techniques for image captioning. PhD thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/60782/.
Full textTu, Guoyun. "Image Captioning On General Data And Fashion Data : An Attribute-Image-Combined Attention-Based Network for Image Captioning on Mutli-Object Images and Single-Object Images." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282925.
Full textBildtextning är ett avgörande fält för datorsyn och behandling av naturligt språk. Det kan tillämpas i stor utsträckning på högvolyms webbbilder, som att överföra bildinnehåll till synskadade användare. Många metoder antas inom detta område såsom uppmärksamhetsbaserade metoder, semantiska konceptbaserade modeller. Dessa uppnår utmärkt prestanda på allmänna bilddatamängder som MS COCO-dataset. Det lämnas dock fortfarande outforskat på bilder med ett objekt.I denna uppsats föreslår vi ett nytt attribut-information-kombinerat uppmärksamhetsbaserat nätverk (AIC-AB Net). I varje tidsteg läggs attributinformation till som ett komplement till visuell information. För sekventiell ordgenerering bestämmer rumslig uppmärksamhet specifika regioner av bilder som ska passera avkodaren. Sentinelgrinden bestämmer om den ska ta hand om bilden eller den visuella vaktposten (vad avkodaren redan vet, inklusive attributinformation). Text attributinformation matas synkront för att hjälpa bildigenkänning och minska osäkerheten.Vi bygger en ny modedataset bestående av modebilder för att skapa ett riktmärke för bilder med en objekt. Denna modedataset består av 144 422 bilder från 24 649 modeprodukter, med en beskrivningsmening för varje bild. Vår metod testas på MS COCO dataset och den föreslagna Fashion dataset. Resultaten visar den överlägsna prestandan hos den föreslagna modellen på både bilder med flera objekt och enbildsbilder. Vårt AIC-AB-nät överträffar det senaste nätverket Adaptive Attention Network med 0,017, 0,095 och 0,095 (CIDEr Score) i COCO-datasetet, modedataset (bästsäljare) respektive modedatasetet (alla leverantörer). Resultaten avslöjar också komplementet till uppmärksamhetsarkitektur och attributinformation.
Karayil, Tushar [Verfasser], and Andreas [Akademischer Betreuer] Dengel. "Affective Image Captioning: Extraction and Semantic Arrangement of Image Information with Deep Neural Networks / Tushar Karayil ; Betreuer: Andreas Dengel." Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1214640958/34.
Full textGennari, Riccardo. "End-to-end Deep Metric Learning con Vision-Language Model per il Fashion Image Captioning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25772/.
Full textKan, Jichao. "Visual-Text Translation with Deep Graph Neural Networks." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23759.
Full textMa, Yufeng. "Going Deeper with Images and Natural Language." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99993.
Full textDoctor of Philosophy
Kvita, Jakub. "Popis fotografií pomocí rekurentních neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255324.
Full text(5930603), Hemanth Devarapalli. "Forced Attention for Image Captioning." Thesis, 2019.
Find full textAutomatic generation of captions for a given image is an active research area in Artificial Intelligence. The architectures have evolved from using metadata of the images on which classical machine learning was employed to neural networks. Two different styles of architectures evolved in the neural network space for image captioning: Encoder-Attention-Decoder architecture, and the transformer architecture. This study is an attempt to modify the attention to allow any object to be specified. An archetypical Encoder-Attention-Decoder architecture (Show, Attend, and Tell (Xu et al., 2015)) is employed as a baseline for this study, and a modification of the Show, Attend, and Tell architecture is proposed. Both the architectures are evaluated on the MSCOCO (Lin et al., 2014) dataset, and seven metrics: BLEU – 1, 2, 3, 4 (Papineni, Roukos, Ward & Zhu, 2002), METEOR (Banerjee & Lavie, 2005), ROGUE L (Lin, 2004), and CIDer (Vedantam, Lawrence & Parikh, 2015) are calculated. Finally, the statistical significance of the results is evaluated by performing paired t tests.
Mathews, Alexander Patrick. "Automatic Image Captioning with Style." Phd thesis, 2018. http://hdl.handle.net/1885/151929.
Full textBook chapters on the topic "Image Captioning"
Sarang, Poornachandra. "Image Captioning." In Artificial Neural Networks with TensorFlow 2, 471–522. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6150-7_10.
Full textHe, Sen, Wentong Liao, Hamed R. Tavakoli, Michael Yang, Bodo Rosenhahn, and Nicolas Pugeault. "Image Captioning Through Image Transformer." In Computer Vision – ACCV 2020, 153–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69538-5_10.
Full textDeng, Chaorui, Ning Ding, Mingkui Tan, and Qi Wu. "Length-Controllable Image Captioning." In Computer Vision – ECCV 2020, 712–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58601-0_42.
Full textYang, Huan, Dandan Song, and Lejian Liao. "Image Captioning with Relational Knowledge." In Lecture Notes in Computer Science, 378–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97310-4_43.
Full textWang, Ziwei, Zi Huang, and Yadan Luo. "PAIC: Parallelised Attentive Image Captioning." In Lecture Notes in Computer Science, 16–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39469-1_2.
Full textMeng, Zihang, David Yang, Xuefei Cao, Ashish Shah, and Ser-Nam Lim. "Object-Centric Unsupervised Image Captioning." In Lecture Notes in Computer Science, 219–35. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20059-5_13.
Full textBathija, Pranav, Harsh Chawla, Ashish Bhat, and Arti Deshpande. "Image Captioning Using Ensemble Model." In ICT Systems and Sustainability, 345–55. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5987-4_35.
Full textCetinic, Eva. "Iconographic Image Captioning for Artworks." In Pattern Recognition. ICPR International Workshops and Challenges, 502–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68796-0_36.
Full textWang, Shihao, Hong Mo, Yue Xu, Wei Wu, and Zhong Zhou. "Intra-Image Region Context for Image Captioning." In Advances in Multimedia Information Processing – PCM 2018, 212–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00764-5_20.
Full textAlsharid, Mohammad, Harshita Sharma, Lior Drukker, Aris T. Papageorgiou, and J. Alison Noble. "Weakly Supervised Captioning of Ultrasound Images." In Medical Image Understanding and Analysis, 187–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12053-4_14.
Full textConference papers on the topic "Image Captioning"
Adhikari, Aashish, and Sushil Ghimire. "Nepali Image Captioning." In 2019 Artificial Intelligence for Transforming Business and Society (AITB). IEEE, 2019. http://dx.doi.org/10.1109/aitb48515.2019.8947436.
Full textAneja, Jyoti, Aditya Deshpande, and Alexander G. Schwing. "Convolutional Image Captioning." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018. http://dx.doi.org/10.1109/cvpr.2018.00583.
Full textFeng, Yang, Lin Ma, Wei Liu, and Jiebo Luo. "Unsupervised Image Captioning." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00425.
Full textGe, Xuri, Fuhai Chen, Chen Shen, and Rongrong Ji. "Colloquial Image Captioning." In 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019. http://dx.doi.org/10.1109/icme.2019.00069.
Full textPuscasiu, Adela, Alexandra Fanca, Dan-Ioan Gota, and Honoriu Valean. "Automated image captioning." In 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020. http://dx.doi.org/10.1109/aqtr49680.2020.9129930.
Full textByrd, Emmanuel, and Miguel Gonzalez-Mendoza. "OSCAR and ActivityNet: an Image Captioning model can effectively learn a Video Captioning dataset." In LatinX in AI at Computer Vision and Pattern Recognition Conference 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai202106257.
Full textYan, Xu, Zhengcong Fei, Zekang Li, Shuhui Wang, Qingming Huang, and Qi Tian. "Semi-Autoregressive Image Captioning." In MM '21: ACM Multimedia Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3474085.3475179.
Full textMason, Rebecca, and Eugene Charniak. "Domain-Specific Image Captioning." In Proceedings of the Eighteenth Conference on Computational Natural Language Learning. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. http://dx.doi.org/10.3115/v1/w14-1602.
Full textZeng, Pengpeng, Haonan Zhang, Jingkuan Song, and Lianli Gao. "S2 Transformer for Image Captioning." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/224.
Full textGuo, Longteng, Jing Liu, Xinxin Zhu, Xingjian He, Jie Jiang, and Hanqing Lu. "Non-Autoregressive Image Captioning with Counterfactuals-Critical Multi-Agent Learning." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/107.
Full text