Academic literature on the topic 'Image Clustering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Image Clustering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Image Clustering"
Miklautz, Lukas, Dominik Mautz, Muzaffer Can Altinigneli, Christian Böhm, and Claudia Plant. "Deep Embedded Non-Redundant Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5174–81. http://dx.doi.org/10.1609/aaai.v34i04.5961.
Full textSoleh, Muhamad, Aniati Murni Arymurthy, and Sesa Wiguna. "CHANGE DETECTION IN MULTI-TEMPORAL IMAGES USING MULTISTAGE CLUSTERING FOR DISASTER RECOVERY PLANNING." Jurnal Ilmu Komputer dan Informasi 11, no. 2 (June 29, 2018): 110. http://dx.doi.org/10.21609/jiki.v11i2.623.
Full textTang, Jun. "Image Registration Using Clustering Algorithm." Advanced Materials Research 108-111 (May 2010): 63–68. http://dx.doi.org/10.4028/www.scientific.net/amr.108-111.63.
Full textZhu, Wencheng, Jiwen Lu, and Jie Zhou. "Nonlinear subspace clustering for image clustering." Pattern Recognition Letters 107 (May 2018): 131–36. http://dx.doi.org/10.1016/j.patrec.2017.08.023.
Full textLi, Zhihui, Lina Yao, Sen Wang, Salil Kanhere, Xue Li, and Huaxiang Zhang. "Adaptive Two-Dimensional Embedded Image Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4796–803. http://dx.doi.org/10.1609/aaai.v34i04.5914.
Full textGarcía Villalba, Luis Javier, Ana Lucila Sandoval Orozco, and Jocelin Rosales Corripio. "Smartphone image clustering." Expert Systems with Applications 42, no. 4 (March 2015): 1927–40. http://dx.doi.org/10.1016/j.eswa.2014.10.018.
Full textLi, Xutong, Taoying Li, and Yan Wang. "GW-DC: A Deep Clustering Model Leveraging Two-Dimensional Image Transformation and Enhancement." Algorithms 14, no. 12 (November 29, 2021): 349. http://dx.doi.org/10.3390/a14120349.
Full textPrades, José, Gonzalo Safont, Addisson Salazar, and Luis Vergara. "Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering." Remote Sensing 12, no. 21 (November 1, 2020): 3585. http://dx.doi.org/10.3390/rs12213585.
Full textTongbram, Simon. "Clustering-based Image Segmentation Techniques: A Review." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 701–7. http://dx.doi.org/10.5373/jardcs/v12sp7/20202160.
Full textMohammed, Shatha J. "Brain Image Segmentation Based on Fuzzy Clustering." Al-Mustansiriyah Journal of Science 28, no. 3 (July 3, 2018): 220. http://dx.doi.org/10.23851/mjs.v28i3.553.
Full textDissertations / Theses on the topic "Image Clustering"
U, Leong Hou. "Web image clustering and retrieval." Thesis, University of Macau, 2005. http://umaclib3.umac.mo/record=b1445902.
Full textSayar, Ahmet. "Image Annotation With Semi-supervised Clustering." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611251/index.pdf.
Full textSpång, Anton. "Automatic Image Annotation by Sharing Labels Based on Image Clustering." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210164.
Full textUtvecklingen av bildkollektioners storlekar har fram till idag ökat behovet av ett pålitligt och effektivt annoteringsverktyg i och med att manuell annotering har blivit ineffektivt. Denna rapport utvärderar möjligheterna att dela bildtaggar mellan visuellt lika bilder med ett system för automatisk bildannotering baserat på klustring. Utvärderingen sker i form av flera experiment med olika algoritmer och olika omärkta datamängder. I experimenten är systemet jämfört med en prisbelönt konvolutionell neural nätverksmodell, vilken är använd som utgångspunkt, för att undersöka om systemets resultat kan bli bättre än utgångspunktens resultat. Resultaten visar att både precisionen och återkallelsen förbättrades i de experiment som genomfördes på den data använd i detta arbete. En precisionsökning med 0.094 och en återkallelseökning med 0.049 för det implementerade systemet jämfört med utgångspunkten, över det genomförda experimenten.
Chang, Soong Uk. "Clustering with mixed variables /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19086.pdf.
Full textDaniels, Kristine Jean. "Clustering of Database Query Results." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1282.pdf.
Full textEkstrom, Nathan Hyrum. "Increasing DOGMA Scaling Through Clustering." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2359.pdf.
Full textKong, Tian Fook. "Multilevel spectral clustering : graph partitions and image segmentation." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45275.
Full textIncludes bibliographical references (p. 145-146).
While the spectral graph partitioning method gives high quality segmentation, segmenting large graphs by the spectral method is computationally expensive. Numerous multilevel graph partitioning algorithms are proposed to reduce the segmentation time for the spectral partition of large graphs. However, the greedy local refinement used in these multilevel schemes has the tendency of trapping the partition in poor local minima. In this thesis, I develop a multilevel graph partitioning algorithm that incorporates the inverse powering method with greedy local refinement. The combination of the inverse powering method with greedy local refinement ensures that the partition quality of the multilevel method is as good as, if not better than, segmenting the large graph by the spectral method. In addition, I present a scheme to construct the adjacency matrix, W and degree matrix, D for the coarse graphs. The proposed multilevel graph partitioning algorithm is able to bisect a graph (k = 2) with significantly shorter time than segmenting the original graph without the multilevel implementation, and at the same time achieving the same normalized cut (Ncut) value. The starting eigenvector, obtained by solving a generalized eigenvalue problem on the coarsest graph, is close to the Fiedler vector of the original graph. Hence, the inverse iteration needs only a few iterations to converge the starting vector. In the k-way multilevel graph partition, the larger the graph, the greater the reduction in the time needed for segmenting the graph. For the multilevel image segmentation, the multilevel scheme is able to give better segmentation than segmenting the original image. The multilevel scheme has higher success of preserving the salient part of an object.
(cont.) In this work, I also show that the Ncut value is not the ultimate yardstick for the segmentation quality of an image. Finding a partition that has lower Ncut value does not necessary means better segmentation quality. Segmenting large images by the multilevel method offers both speed and quality.
by Tian Fook Kong.
S.M.
Fang, Yan. "Data clustering and graph-based image matching methods." Thesis, University of York, 2012. http://etheses.whiterose.ac.uk/4778/.
Full textDavis, Aaron Samuel. "Bisecting Document Clustering Using Model-Based Methods /." Diss., CLICK HERE for online access, 2010. http://contentdm.lib.byu.edu/ETD/image/etd3332.pdf.
Full textPiatrik, Tomas. "Image clustering and Video Summarisation using ant-inspired methods." Thesis, University of London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509746.
Full textBooks on the topic "Image Clustering"
Siddiqui, Fasahat Ullah, and Abid Yahya. Clustering Techniques for Image Segmentation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81230-0.
Full textKöster, Klaus. Robust clustering and image segmentation. Birmingham: University of Birmingham, 1999.
Find full textBorra, Surekha, Rohit Thanki, and Nilanjan Dey. Satellite Image Analysis: Clustering and Classification. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6424-2.
Full textRamadas, Meera, and Ajith Abraham. Metaheuristics for Data Clustering and Image Segmentation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04097-0.
Full textK, Kokula Krishna Hari, and K. Saravanan, eds. Identification of Brain Regions Related to Alzheimers’ Diseases using MRI Images Based on Eigenbrain and K-means Clustering. Tiruppur, Tamil Nadu, India: Association of Scientists, Developers and Faculties, 2016.
Find full textYahya, Abid, and Fasahat Ullah Siddiqui. Clustering Techniques for Image Segmentation. Springer International Publishing AG, 2021.
Find full textYahya, Abid, and Fasahat Ullah Siddiqui. Clustering Techniques for Image Segmentation. Springer International Publishing AG, 2022.
Find full textDey, Nilanjan, Rohit Thanki, and Surekha Borra. Satellite Image Analysis: Clustering and Classification. Springer, 2019.
Find full textAbraham, Ajith, and Meera Ramadas. Metaheuristics for Data Clustering and Image Segmentation. Springer, 2018.
Find full textBhattacharyya, Siddhartha, Sourav De, Paramartha Dutta, and Indrajit Pan. Intelligent Multidimensional Data Clustering and Analysis. IGI Global, 2017.
Find full textBook chapters on the topic "Image Clustering"
Borra, Surekha, Rohit Thanki, and Nilanjan Dey. "Satellite Image Clustering." In Satellite Image Analysis: Clustering and Classification, 31–52. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6424-2_3.
Full textFernandez, Gregory, Abdelouaheb Meckaouche, Philippe Peter, and Chabane Djeraba. "Intelligent Image Clustering." In XML-Based Data Management and Multimedia Engineering — EDBT 2002 Workshops, 406–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36128-6_24.
Full textCleju, Ioan, Pasi Fränti, and Xiaolin Wu. "Clustering Based on Principal Curve." In Image Analysis, 872–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_88.
Full textSiddiqui, Fasahat Ullah, and Abid Yahya. "Novel Partitioning Clustering." In Clustering Techniques for Image Segmentation, 69–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_3.
Full textSiddiqui, Fasahat Ullah, and Abid Yahya. "Partitioning Clustering Techniques." In Clustering Techniques for Image Segmentation, 35–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_2.
Full textBorra, Surekha, Rohit Thanki, and Nilanjan Dey. "Satellite Image Classification." In Satellite Image Analysis: Clustering and Classification, 53–81. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6424-2_4.
Full textMyhre, Jonas Nordhaug, Karl Øyvind Mikalsen, Sigurd Løkse, and Robert Jenssen. "Consensus Clustering Using kNN Mode Seeking." In Image Analysis, 175–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19665-7_15.
Full textGong, Zhiguo, Leong Hou U, and Chan Wa Cheang. "Web Image Semantic Clustering." In Lecture Notes in Computer Science, 1416–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11575801_30.
Full textToennies, Klaus D. "Classification and Clustering." In Guide to Medical Image Analysis, 473–528. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7320-5_12.
Full textToennies, Klaus D. "Classification and Clustering." In Guide to Medical Image Analysis, 379–412. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2751-2_12.
Full textConference papers on the topic "Image Clustering"
chen, Wei-Bang, and Chengcui Zhang. "Image spam clustering." In the First ACM workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1631081.1631088.
Full textEl Choubassi, Maha, Ara V. Nefian, Igor Kozintse, Jean-Yves Bouguet, and Yi Wu. "Web Image Clustering." In 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.367296.
Full textTariq, Amara, and Hassan Foroosh. "T-clustering: Image clustering by tensor decomposition." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351719.
Full textSawant, Rudra, Gianluca Demartini, and Tom Bridge. "Hierarchical Clustering of Corals using Image Clustering." In ADCS '21: Australasian Document Computing Symposium. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3503516.3503531.
Full textAhmed, Nasir, and Abdul Jalil. "Image Clustering Using Discriminant Image Features." In 2013 11th International Conference on Frontiers of Information Technology (FIT). IEEE, 2013. http://dx.doi.org/10.1109/fit.2013.13.
Full textCaldelli, Roberto, Irene Amerini, Francesco Picchioni, and Matteo Innocenti. "Fast image clustering of unknown source images." In 2010 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE, 2010. http://dx.doi.org/10.1109/wifs.2010.5711454.
Full textLiu, Yang, Quanxue Gao, Zhaohua Yang, and Shujian Wang. "Learning with Adaptive Neighbors for Image Clustering." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/344.
Full textYin, Qiyue, Shu Wu, and Liang Wang. "Partially tagged image clustering." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351559.
Full textChang, Jianlong, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. "Deep Adaptive Image Clustering." In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.626.
Full textChang, C. C., and D. J. Buehrer. "DE-CLUSTERING IMAGE DATABASES." In Proceedings of the Second Far-East Workshop on Future Database Systems. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814503624_0017.
Full textReports on the topic "Image Clustering"
Silverman, Jerry, and Charlene Caefer. Use of Eigenvector-Generated Scatter Plots in Clustering Image Data. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada483563.
Full textWehrens, Ron, Lutgarde M. Buydens, Chris Fraley, and Adrian E. Raftery. Model-Based Clustering for Image Segmentation and Large Datasets Via Sampling. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada459638.
Full textMurtagh, Fionn, Adrian E. Raftery, and Jean-Luc Starck. Bayesian Inference for Color Image Quantization via Model-Based Clustering Trees. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada459791.
Full textHarris, J. Clustering of gamma ray spectrometer data using a computer image analysis system. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128043.
Full textKersten, Paul R., Roger R. Lee, Jim S. Verdi, Ron M. Carvlho, and Stephen P. Yankovich. Segmenting SAR Images Using Fuzzy Clustering. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada378143.
Full textKersten, Paul, and Roger Lee. Segmenting Polarimetric SAR Images Using Robust Competitive Clustering. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada389803.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full text