To see the other types of publications on this topic, follow the link: Image Correlation Spectroscopy.

Journal articles on the topic 'Image Correlation Spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Image Correlation Spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nohe, A., and N. O. Petersen. "Image Correlation Spectroscopy." Science's STKE 2007, no. 417 (2007): pl7. http://dx.doi.org/10.1126/stke.4172007pl7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiseman, P. W., J. A. Squier, M. H. Ellisman, and K. R. Wilson. "Two-photon image correlation spectroscopy and image cross-correlation spectroscopy." Journal of Microscopy 200, no. 1 (2000): 14–25. http://dx.doi.org/10.1046/j.1365-2818.2000.00736.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Digman, Michelle A., and Enrico Gratton. "Scanning image correlation spectroscopy." BioEssays 34, no. 5 (2012): 377–85. http://dx.doi.org/10.1002/bies.201100118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clayton, Andrew H. A. "Phase-Sensitive Fluorescence Image Correlation Spectroscopy." International Journal of Molecular Sciences 25, no. 20 (2024): 11165. http://dx.doi.org/10.3390/ijms252011165.

Full text
Abstract:
Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal function that is sensitive to the lifetime of the fluorescent species. In this paper, the theory of phase-sensitive fluorescence image correlation spectroscopy is described. In this version of lifetime imaging, image correlation spectroscopy analysis (i.e., spatial auto
APA, Harvard, Vancouver, ISO, and other styles
5

Kurniawan, Nicholas A., and Raj Rajagopalan. "Probe-Independent Image Correlation Spectroscopy." Langmuir 27, no. 6 (2011): 2775–82. http://dx.doi.org/10.1021/la104478x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hendrix, Jelle, Tomas Dekens, and Don C. Lamb. "Arbitrary-Region Image Correlation Spectroscopy." Biophysical Journal 110, no. 3 (2016): 176a. http://dx.doi.org/10.1016/j.bpj.2015.11.983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiseman, Paul W. "Image Correlation Spectroscopy: Principles and Applications." Cold Spring Harbor Protocols 2015, no. 4 (2015): pdb.top086124. http://dx.doi.org/10.1101/pdb.top086124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hendrix, Jelle, Tomas Dekens, Waldemar Schrimpf, and Don C. Lamb. "Arbitrary-Region Raster Image Correlation Spectroscopy." Biophysical Journal 111, no. 8 (2016): 1785–96. http://dx.doi.org/10.1016/j.bpj.2016.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Semrau, Stefan, Laurent Holtzer, Marcos Gonzalez-Gaitan, and Thomas Schmidt. "Particle Image Cross Correlation Spectroscopy (PICCS)." Biophysical Journal 98, no. 3 (2010): 182a. http://dx.doi.org/10.1016/j.bpj.2009.12.976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Longfils, Marco, Nick Smisdom, Marcel Ameloot, et al. "Raster Image Correlation Spectroscopy Performance Evaluation." Biophysical Journal 117, no. 10 (2019): 1900–1914. http://dx.doi.org/10.1016/j.bpj.2019.09.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rossow, Molly J., Jennifer M. Sasaki, Michelle A. Digman, and Enrico Gratton. "Raster image correlation spectroscopy in live cells." Nature Protocols 5, no. 11 (2010): 1761–74. http://dx.doi.org/10.1038/nprot.2010.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wiseman, Paul. "Introduction to Fluorescence and Image Correlation Spectroscopy." Microscopy and Microanalysis 10, S02 (2004): 246–47. http://dx.doi.org/10.1017/s1431927604886483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Spendier, Kathrin, and James L. Thomas. "Image correlation spectroscopy of randomly distributed disks." Journal of Biological Physics 37, no. 4 (2011): 477–92. http://dx.doi.org/10.1007/s10867-011-9232-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raub, Christopher B., Jay Unruh, Vinod Suresh, et al. "Image Correlation Spectroscopy of Multiphoton Images Correlates with Collagen Mechanical Properties." Biophysical Journal 94, no. 6 (2008): 2361–73. http://dx.doi.org/10.1529/biophysj.107.120006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Srivastava, M., N. O. Petersen, G. R. Mount, D. M. Kingston, and N. S. McIntyre. "Analysis of three-dimensional SIMS images using image cross-correlation spectroscopy." Surface and Interface Analysis 26, no. 3 (1998): 188–94. http://dx.doi.org/10.1002/(sici)1096-9918(199803)26:3<188::aid-sia359>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kang, Kyongok. "Mesoscopic relaxation time of dynamic image correlation spectroscopy." Journal of Biomedical Science and Engineering 03, no. 06 (2010): 625–32. http://dx.doi.org/10.4236/jbise.2010.36085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Costantino, Santiago, Jonathan W. D. Comeau, David L. Kolin, and Paul W. Wiseman. "Accuracy and Dynamic Range of Spatial Image Correlation and Cross-Correlation Spectroscopy." Biophysical Journal 89, no. 2 (2005): 1251–60. http://dx.doi.org/10.1529/biophysj.104.057364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Prummer, Michael, Sannah Zoffmann, Vanessa Klug, and Dorothee Kling. "A Cell Motility Assay Based on Image Correlation Spectroscopy." Biophysical Journal 102, no. 3 (2012): 191a—192a. http://dx.doi.org/10.1016/j.bpj.2011.11.1046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nohe, Anja, Eleonora Keating, Crystal Loh, Michael T. Underhill, and Nils O. Petersen. "Caveolin-1 isoform reorganization studied by image correlation spectroscopy." Faraday Discussions 126 (2004): 185. http://dx.doi.org/10.1039/b304943d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Prummer, Michael, Dorothee Kling, Vanessa Trefzer, Thilo Enderle, Sannah Zoffmann, and Marco Prunotto. "A Random Motility Assay Based on Image Correlation Spectroscopy." Biophysical Journal 104, no. 11 (2013): 2362–72. http://dx.doi.org/10.1016/j.bpj.2013.04.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Civita, Simone, Ranieri Bizzarri, Paolo Bianchini, and Alberto Diaspro. "Image correlation spectroscopy approaches to probe diffusion in cell." Biophysical Journal 122, no. 3 (2023): 274a. http://dx.doi.org/10.1016/j.bpj.2022.11.1563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tanner, Kandice, Donald Ferris, Luca Lanzano, et al. "Image Correlation Spectroscopy Reveals Global Dynamics of Wound Healing." Biophysical Journal 96, no. 3 (2009): 42a. http://dx.doi.org/10.1016/j.bpj.2008.12.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nieves, D. J., Y. Li, D. G. Fernig, and R. Lévy. "Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells." Royal Society Open Science 2, no. 6 (2015): 140454. http://dx.doi.org/10.1098/rsos.140454.

Full text
Abstract:
Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short eno
APA, Harvard, Vancouver, ISO, and other styles
24

Brewer, Jonathan, Maria Bloksgaard, Jakub Kubiak, and Luis Bagatolli. "Fluorescent Correlation Spectroscopy and Raster Image Correlation Spectroscopy as a Tool to Measure Diffusion in the Human Epidermis." Biophysical Journal 100, no. 3 (2011): 630a. http://dx.doi.org/10.1016/j.bpj.2010.12.3623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chushkin, Y., C. Caronna, and A. Madsen. "A novel event correlation scheme for X-ray photon correlation spectroscopy." Journal of Applied Crystallography 45, no. 4 (2012): 807–13. http://dx.doi.org/10.1107/s0021889812023321.

Full text
Abstract:
X-ray photon correlation spectroscopy (XPCS) was employed to measure the time-dependent intermediate scattering function in an organic molecular glass former. Slow translational dynamics were probed in the glassy state and the correlation functions were calculated from two-dimensional speckle patterns recorded by a CCD detector. The image frames were analysed using a droplet algorithm together with an event correlation scheme. This method provides results analogous to standard intensity correlation algorithms but is much faster, hence addressing the recurrent problem of insufficient computing
APA, Harvard, Vancouver, ISO, and other styles
26

Benn, A. G., and R. J. Kulperger. "Integrated marked Poisson processes with application to image correlation spectroscopy." Canadian Journal of Statistics 25, no. 2 (1997): 215–31. http://dx.doi.org/10.2307/3315733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kolin, David L., Santiago Costantino, and Paul W. Wiseman. "Sampling Effects, Noise, and Photobleaching in Temporal Image Correlation Spectroscopy." Biophysical Journal 90, no. 2 (2006): 628–39. http://dx.doi.org/10.1529/biophysj.105.072322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kitamura, Akira, Hiroki Shimizu, and Masataka Kinjo. "Determination of cytoplasmic optineurin foci sizes using image correlation spectroscopy." Journal of Biochemistry 164, no. 3 (2018): 223–29. http://dx.doi.org/10.1093/jb/mvy044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

DE METS, R., A. DELON, M. BALLAND, O. DESTAING, and I. WANG. "Dynamic range and background filtering in raster image correlation spectroscopy." Journal of Microscopy 279, no. 2 (2020): 123–38. http://dx.doi.org/10.1111/jmi.12925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rowland, David J., Hannah H. Tuson, and Julie S. Biteen. "Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy." Biophysical Journal 110, no. 10 (2016): 2241–51. http://dx.doi.org/10.1016/j.bpj.2016.04.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ciccotosto, Giuseppe D., Noga Kozer, Timothy T. Y. Chow, James W. M. Chon, and Andrew H. A. Clayton. "Aggregation Distributions on Cells Determined by Photobleaching Image Correlation Spectroscopy." Biophysical Journal 104, no. 5 (2013): 1056–64. http://dx.doi.org/10.1016/j.bpj.2013.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Robertson, Claire. "Theory and practical recommendations for autocorrelation-based image correlation spectroscopy." Journal of Biomedical Optics 17, no. 8 (2012): 080801. http://dx.doi.org/10.1117/1.jbo.17.8.080801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Fulong, Gang Li, Shuqiang Yang, Wenjuan Yan, Guoquan He, and Ling Lin. "Recognition of Heterogeneous Edges in Multiwavelength Transmission Images Based on the Weighted Constraint Decision Method." Applied Spectroscopy 74, no. 8 (2020): 883–93. http://dx.doi.org/10.1177/0003702820908951.

Full text
Abstract:
Multiwavelength light transmission imaging provides a possibility for early detection of breast cancer. However, due to strong scattering during the transmission process of breast tissue analysis, the transmitted image signal is weak and the image is blurred and this makes heterogeneous edge detection difficult. This paper proposes a method based on the weighted constraint decision (WCD) method to eliminate the erosion and checkerboard effects in image histogram equalization (HE) enhancement and to improve the recognition of heterogeneous edge. Multiwavelength transmission images of phantom ar
APA, Harvard, Vancouver, ISO, and other styles
34

Rossow, Molly, William W. Mantulin, and Enrico Gratton. "Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels." Journal of Biomedical Optics 14, no. 2 (2009): 024014. http://dx.doi.org/10.1117/1.3088203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gröner, Nadine, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth. "Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy." Optics Express 18, no. 20 (2010): 21225. http://dx.doi.org/10.1364/oe.18.021225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kurniawan, Nicholas Agung, Chwee Teck Lim, and Raj Rajagopalan. "Image correlation spectroscopy as a tool for microrheology of soft materials." Soft Matter 6, no. 15 (2010): 3499. http://dx.doi.org/10.1039/c002265a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Semrau, Stefan, Piet Lommerse, Margot Beukers, and Thomas Schmidt. "Adenosine A1 Receptor Signaling Unraveled By Particle Image Correlation Spectroscopy (PICS)." Biophysical Journal 96, no. 3 (2009): 368a. http://dx.doi.org/10.1016/j.bpj.2008.12.1983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Semrau, Stefan, Laurent Holtzer, Marcos González-Gaitán, and Thomas Schmidt. "Quantification of Biological Interactions with Particle Image Cross-Correlation Spectroscopy (PICCS)." Biophysical Journal 100, no. 7 (2011): 1810–18. http://dx.doi.org/10.1016/j.bpj.2010.12.3746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wiseman, Paul W. "Advances in Image Correlation Spectroscopy for Measurements in Heterogeneous Cell Environments." Biophysical Journal 102, no. 3 (2012): 6a. http://dx.doi.org/10.1016/j.bpj.2011.11.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kulkarni, R. P., D. D. Wu, M. E. Davis, and S. E. Fraser. "Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy." Proceedings of the National Academy of Sciences 102, no. 21 (2005): 7523–28. http://dx.doi.org/10.1073/pnas.0501950102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

IMMERSTRAND, CHARLOTTE, JOEL HEDLUND, KARL–ERIC MAGNUSSON, TOMMY SUNDQVIST, and KAJSA HOLMGREN PETERSON. "Organelle transport in melanophores analyzed by white light image correlation spectroscopy." Journal of Microscopy 225, no. 3 (2007): 275–82. http://dx.doi.org/10.1111/j.1365-2818.2007.01743.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rocheleau, Jonathan V., and Nils O. Petersen. "The Sendai virus membrane fusion mechanism studied using image correlation spectroscopy." European Journal of Biochemistry 268, no. 10 (2001): 2924–30. http://dx.doi.org/10.1046/j.1432-1327.2001.02181.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Danaf, Nader. "Image Correlation Spectroscopy based Assay to Investigate G-Protein Coupled Receptors." Biophysical Journal 112, no. 3 (2017): 146a. http://dx.doi.org/10.1016/j.bpj.2016.11.803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Staley, Ben, Egor Zindy, and Alain Pluen. "Quantifying uptake and distribution of arginine rich peptides at therapeutic concentrations using fluorescence correlation spectroscopy and image correlation spectroscopy techniques." Drug Discovery Today 15, no. 23-24 (2010): 1099. http://dx.doi.org/10.1016/j.drudis.2010.09.402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cainero, Isotta, Elena Cerutti, Mario Faretta, et al. "Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS)." Sensors 21, no. 6 (2021): 2010. http://dx.doi.org/10.3390/s21062010.

Full text
Abstract:
Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that i
APA, Harvard, Vancouver, ISO, and other styles
46

Semrau, S., and T. Schmidt. "Particle Image Correlation Spectroscopy (PICS): Retrieving Nanometer-Scale Correlations from High-Density Single-Molecule Position Data." Biophysical Journal 92, no. 2 (2007): 613–21. http://dx.doi.org/10.1529/biophysj.106.092577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chakraborty, Hirak, Md Jafurulla, Andrew H. A. Clayton, and Amitabha Chattopadhyay. "Exploring oligomeric state of the serotonin1A receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function." Faraday Discussions 207 (2018): 409–21. http://dx.doi.org/10.1039/c7fd00192d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Arrabito, G., F. Cavaleri, V. Montalbano, V. Vetri, M. Leone, and B. Pignataro. "Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS)." Lab on a Chip 16, no. 24 (2016): 4666–76. http://dx.doi.org/10.1039/c6lc01072e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hao, Huiyan, Wenyu Liu, and Xulin Yu. "Detection of Abnormal Blood Flow Region Based on Near Infrared Correlation Spectroscopy." Photonics 11, no. 9 (2024): 798. http://dx.doi.org/10.3390/photonics11090798.

Full text
Abstract:
Blood flow measurement of microvessels in human tissues is of vital importance for the diagnosis and treatment of many diseases. In this paper, the detection method of abnormal blood flow regions based on near-infrared correlation spectroscopy is studied. We used the NL-Bregman-TV imaging algorithm to realize Blood flow imaging. However, due to the limitation of the number and distribution of detectors, the pixels obtained from images are extremely low, which cannot meet the practical requirements of the visual and the abnormal blood flow range measurement. In this paper, the bicubic interpola
APA, Harvard, Vancouver, ISO, and other styles
50

Bachir, Alexia I., Nela Durisic, Benedict Hebert, Peter Grütter, and Paul W. Wiseman. "Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy." Journal of Applied Physics 99, no. 6 (2006): 064503. http://dx.doi.org/10.1063/1.2175470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!