Academic literature on the topic 'Image enhancement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Image enhancement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Image enhancement"
B., Mrs Rajeswari. "Night Time Image Enhancement." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 04 (April 2, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29951.
Full textM, Reshma, and Priestly B. Shan. "Oretinex-DI: Pre-Processing Algorithms for Melanoma Image Enhancement." Biomedical and Pharmacology Journal 11, no. 3 (July 30, 2018): 1381–87. http://dx.doi.org/10.13005/bpj/1501.
Full textSravani, L., N. Rama Venkat Sai, K. Noomika, M. Upendra Kumar, and K. V. Adarsh. "Image Enhancement of Underwater Images using Deep Learning Techniques." International Journal of Research Publication and Reviews 4, no. 4 (April 3, 2023): 81–86. http://dx.doi.org/10.55248/gengpi.2023.4.4.34620.
Full textPrateeshwaran, P., Dr N. Keerthana, and Dr S. Kevin Andrews. "Underwater Image Enhancement Techniques." International Journal of Research Publication and Reviews 5, no. 4 (April 28, 2024): 6148–55. http://dx.doi.org/10.55248/gengpi.5.0424.1129.
Full textSuralkar, S. R., and Seema Rajput. "Enhancement of Images Using Contrast Image Enhancement Techniques." International Journal Of Recent Advances in Engineering & Technology 08, no. 03 (March 30, 2020): 16–20. http://dx.doi.org/10.46564/ijraet.2020.v08i03.004.
Full textSri Arsa, Dewa Made, Grafika Jati, Agung Santoso, Rafli Filano, Nurul Hanifah, and Muhammad Febrian Rachmadi. "COMPARISON OF IMAGE ENHANCEMENT METHODS FOR CHROMOSOME KARYOTYPE IMAGE ENHANCEMENT." Jurnal Ilmu Komputer dan Informasi 10, no. 1 (February 28, 2017): 50. http://dx.doi.org/10.21609/jiki.v10i1.445.
Full textKosugi, Satoshi, and Toshihiko Yamasaki. "Unpaired Image Enhancement Featuring Reinforcement-Learning-Controlled Image Editing Software." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 11296–303. http://dx.doi.org/10.1609/aaai.v34i07.6790.
Full textMu, Qi, Xinyue Wang, Yanyan Wei, and Zhanli Li. "Low and non-uniform illumination color image enhancement using weighted guided image filtering." Computational Visual Media 7, no. 4 (July 23, 2021): 529–46. http://dx.doi.org/10.1007/s41095-021-0232-x.
Full textMorath, Julianne M., Cynthia A. Bielecki, Wanda L. Carlson, and Katharine R. MarcAurele. "Image Enhancement." AORN Journal 53, no. 5 (May 1991): 1238–47. http://dx.doi.org/10.1016/s0001-2092(07)69261-8.
Full textBeardsley, Tim. "Image Enhancement." Scientific American 270, no. 3 (March 1994): 14–18. http://dx.doi.org/10.1038/scientificamerican0394-14.
Full textDissertations / Theses on the topic "Image enhancement"
Karelid, Mikael. "Image Enhancement over a Sequence of Images." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-12523.
Full textThis Master Thesis has been conducted at the National Laboratory of Forensic Science (SKL) in Linköping. When images that are to be analyzed at SKL, presenting an interesting object, are of bad quality there may be a need to enhance them. If several images with the object are available, the total amount of information can be used in order to estimate one single enhanced image. A program to do this has been developed by studying methods for image registration and high resolution image estimation. Tests of important parts of the procedure have been conducted. The final results are satisfying and the key to a good high resolution image seems to be the precision of the image registration. Improvements of this part may lead to even better results. More suggestions for further improvementshave been proposed.
Detta examensarbete har utförts på uppdrag av Statens Kriminaltekniska Laboratorium (SKL) i Linköping. Då bilder av ett intressant objekt som ska analyseras på SKL ibland är av dålig kvalitet finns det behov av att förbättra dessa. Om ett flertal bilder på objektet finns tillgängliga kan den totala informationen fråndessa användas för att skatta en enda förbättrad bild. Ett program för att göra detta har utvecklats genom studier av metoder för bildregistrering och skapande av högupplöst bild. Tester av viktiga delar i proceduren har genomförts. De slutgiltiga resultaten är goda och nyckeln till en bra högupplöst bild verkar ligga i precisionen för bildregistreringen. Genom att förbättra denna del kan troligtvis ännu bättre resultat fås. Även andra förslag till förbättringar har lagts fram.
Richardson, Richard Thomas. "Image Enhancement of Cancerous Tissue in Mammography Images." NSUWorks, 2015. http://nsuworks.nova.edu/gscis_etd/39.
Full textOzyurek, Serkan. "Image Dynamic Range Enhancement." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613603/index.pdf.
Full textChana, Deeph S. "Image restoration exploiting statistical models of the image capture process." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246886.
Full textTummala, Sai Virali, and Veerendra Marni. "Comparison of Image Compression and Enhancement Techniques for Image Quality in Medical Images." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15360.
Full textEmiroglu, Ibrahim. "Fingerprint image enhancement & recognition." Thesis, University of Hertfordshire, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363500.
Full textRoelofs, Antonius Arnoldus Jozef. "Image enhancement for low vision /." Online version, 1997. http://bibpurl.oclc.org/web/25504.
Full textMajtanovic, Cveta. "AUTOMATIC ENHANCEMENT OF IMAGE MEMORABILITY." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/320352.
Full textOgni immagine racconta una storia. Le immagini sono uno dei tipi di media più dominanti. Ogni giorno ne vengono caricate miliardi, per un totale di centinaia di miliardi in media ogni anno. Gli artefatti che rappresentano la percezione visiva come fotografie e altre immagini bidimensionali sono distribuiti attraverso un numero crescente di siti web di condivisione di immagini. Di conseguenza, un crescente interesse nel comprendere l'intera immagine o gli oggetti in essa raffigurati, il suo stile o le emozioni che un'immagine potrebbe evocare, insieme a tutte le altre proprietà dell'immagine, è diventato sempre più diffuso nella pratica di ricerca. Questa ricerca si concentra sul problema del miglioramento automatico della memorabilità di un'immagine. Recenti lavori in Computer Vision e Multimedia hanno dimostrato che proprietà intrinseche dell'immagine come la memorabilità possono essere dedotte automaticamente sfruttando potenti modelli di deep learning. Questa ricerca fa avanzare lo stato dell'arte in questo settore affrontando un problema nuovo e più impegnativo: "Possiamo trasformare un'immagine di input arbitraria e renderla più memorabile?". Per formulare correttamente questa domanda si richiede l'esistenza di misure di memorabilità. I metodi per aumentare automaticamente la memorabilità dell'immagine avrebbero un impatto in molti campi di applicazione, come l'istruzione, i giochi o la pubblicità. Per affrontare il problema, introduciamo un approccio ispirato al paradigma dell'editing-by-applying-filters, adottato in applicazioni di fotoritocco come Instagram e Prisma. Gli utenti delle due app devono generalmente passare in rassegna i filtri disponibili prima di trovare la soluzione desiderata e si tratta di un processo che trasforma l’editing in un'attività che richiede risorse e tempo. Nel lavoro svolto ai fini di questa tesi, invertiamo il processo: data un'immagine in ingresso, ci proponiamo di recuperare automaticamente un insieme di “style seed”, cioè un insieme di immagini di stile che, applicate all'immagine in ingresso attraverso un algoritmo di neural style transfer, fornisce il massimo aumento della memorabilità. Di conseguenza, dimostriamo che è possibile recuperare automaticamente i migliori style seed per una determinata immagine, riducendo così notevolmente il numero di tentativi umani necessari per trovare una buona corrispondenza. Inoltre, dimostriamo l'efficacia dell'approccio proposto con esperimenti sul dataset LaMem, disponibile al pubblico, eseguendo sia una valutazione quantitativa che uno studio sugli utenti. Per dimostrare la flessibilità del framework proposto, analizziamo anche l'impatto delle diverse scelte di implementazione, come l'utilizzo di diversi metodi state-of-the-art di neural style transfer. Infine, mostriamo diversi risultati qualitativi per fornire ulteriori approfondimenti sul legame tra stile dell'immagine e memorabilità. Questo approccio nasce dai recenti progressi nel campo della sintesi delle immagini e adotta una deep architecture per generare un'immagine memorabile da una data immagine di input e da uno style seed. È importante sottolineare che per selezionare automaticamente lo stile migliore, basandosi anche su modelli deep, viene proposta una nuova soluzione learning-based. La valutazione sperimentale, condotta su benchmark pubblicamente disponibili, dimostra l'efficacia dell'approccio proposto per la generazione di immagini memorabili attraverso la selezione automatica degli style seed.
Bengtsson, Martin, and Emil Ågren. "Image enhancement of license plates in images using Super Resolution." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121682.
Full textAdolfsson, Karin. "Visual Evaluation of 3D Image Enhancement." Thesis, Linköping University, Department of Biomedical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7944.
Full textTechnologies in image acquisition have developed and often provide image volumes in more than two dimensions. Computer tomography and magnet resonance imaging provide image volumes in three spatial dimensions. The image enhancement methods have developed as well and in this thesis work 3D image enhancement with filter networks is evaluated.
The aims of this work are; to find a method which makes the initial parameter settings in the 3D image enhancement processing easier, to compare 2D and 3D processed image volumes visualized with different visualization techniques and to give an illustration of the benefits with 3D image enhancement processing visualized using these techniques.
The results of this work are;
1. a parameter setting tool that makes the initial parameter setting much easier and
2. an evaluation of 3D image enhancement with filter networks that shows a significant enhanced image quality in 3D processed image volumes with a high noise level compared to the 2D processed volumes. These results are shown in slices, MIP and volume rendering. The differences are even more pronounced if the volume is presented in a different projection than the volume is 2D processed in.
Books on the topic "Image enhancement"
Celebi, Emre, Michela Lecca, and Bogdan Smolka, eds. Color Image and Video Enhancement. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09363-5.
Full textWilson, William J. Millimeter-wave sensor image enhancement. [Washington, DC: National Aeronautics and Space Administration, 1988.
Find full textArad, Nur. Enhancement by image-dependent warping. Palo Alto, CA: Hewlett-Packard Laboratories, Technical Publications Department, 1996.
Find full textJ, Wilson William. Millimeter-wave sensor image enhancement. [Washington, DC: National Aeronautics and Space Administration, 1988.
Find full textRoelofs, T. Image enhancement for low vision. Eindhoven: Eindhoven University, 1997.
Find full textCheung, Kwok-Yin. Signal processing for sonar image enhancement. Norwich: University of East Anglia, 1993.
Find full textNewell, J. C. W. Archival retrieval: Techniques for image enhancement. London: British Broadcasting Corporation Research and Development Department, 1995.
Find full textHighnam, Ralph. Mammographic image analysis. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textK, Park Stephen, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Digital enhancement of flow field images. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textKefayati, Sarah. Confocal and two-photon microscopy: Image enhancement. St. Catharines, Ont: Brock University, Dept. of Physics, 2008.
Find full textBook chapters on the topic "Image enhancement"
Bauer, Jan, Andrej Sycev, and Karlheinz Blankenbach. "Image Enhancement." In Handbook of Visual Display Technology, 781–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_198.
Full textBauer, Jan, Andrej Sycev, and Karlheinz Blankenbach. "Image Enhancement." In Handbook of Visual Display Technology, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35947-7_198-1.
Full textToennies, Klaus D. "Image Enhancement." In Guide to Medical Image Analysis, 125–72. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7320-5_4.
Full textVyas, Aparna, Soohwan Yu, and Joonki Paik. "Image Enhancement." In Signals and Communication Technology, 199–231. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7272-7_6.
Full textMa, Yide, Kun Zhan, and Zhaobin Wang. "Image Enhancement." In Applications of Pulse-Coupled Neural Networks, 61–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13745-7_5.
Full textHighnam, Ralph, and Michael Brady. "Image Enhancement." In Computational Imaging and Vision, 123–42. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4613-5_7.
Full textToennies, Klaus D. "Image Enhancement." In Guide to Medical Image Analysis, 111–46. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2751-2_4.
Full textUmbaugh, Scott E. "Image Enhancement." In Digital Image Processing and Analysis, 211–94. 4th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003221142-6.
Full textChityala, Ravishankar, and Sridevi Pudipeddi. "Image Enhancement." In Image Processing and Acquisition using Python, 95–122. Second edition. | Boca Raton : Chapman & Hall/CRC Press, 2020. | Series: Chapman & Hall/CRC the Python series: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429243370-5.
Full textPianykh, Oleg S. "Image Enhancement." In Understanding Medical Informatics, 59–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01760-0_5.
Full textConference papers on the topic "Image enhancement"
"Image enhancement." In 2010 2nd International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2010. http://dx.doi.org/10.1109/ipta.2010.5586836.
Full textLiang, Yanmei, Li Yang, and Hailun Fan. "Image enhancement for liver CT images." In International Conference on Optical Instrumentation and Technology, edited by Toru Yoshizawa, Ping Wei, and Jesse Zheng. SPIE, 2009. http://dx.doi.org/10.1117/12.837468.
Full textBetz, Volkmar, and Joerg-Uwe Meyer. "Image enhancement of microscopic fluorescence images." In Barcelona - DL tentative, edited by Hans-Jochen Foth, Renato Marchesini, Halina Podbielska, Michel Robert-Nicoud, and Herbert Schneckenburger. SPIE, 1996. http://dx.doi.org/10.1117/12.230021.
Full textJang, Ben K., and Roger S. Gaborski. "Image enhancement for computed radiographic images." In Medical Imaging 1995, edited by Murray H. Loew. SPIE, 1995. http://dx.doi.org/10.1117/12.208699.
Full textAghagolzadeh, Sabzali, and Okan K. Ersoy. "Transform image enhancement." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.ml3.
Full textBhattacharya, Saumik, Sumana Gupta, and Venkatesh K. Subramanian. "Localized image enhancement." In 2014 Twentieth National Conference on Communications (NCC). IEEE, 2014. http://dx.doi.org/10.1109/ncc.2014.6811269.
Full textChen, Kuei-Chun. "Color image enhancement." In the 30th annual Southeast regional conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/503720.503779.
Full textImaino, W., L. Crawforth, and G. Sincerbox. "Optoelectronic fringe enhancement in holographic interferometry." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wg3.
Full textBinti Sabri, Nur Rafidah, and Haniza Binti Yazid. "Image Enhancement Methods For Fundus Retina Images." In 2018 IEEE Student Conference on Research and Development (SCOReD). IEEE, 2018. http://dx.doi.org/10.1109/scored.2018.8711106.
Full textShi, Zhixin, Srirangaraj Setlur, and Venu Govindaraju. "Image Enhancement for Degraded Binary Document Images." In 2011 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2011. http://dx.doi.org/10.1109/icdar.2011.305.
Full textReports on the topic "Image enhancement"
Robinson, J. E. Deconvolution filters and image enhancement. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128047.
Full textCoffey, Mark. Image Enhancement in a Quantum Environment. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada469994.
Full textMoore, D. Image enhancement equipment capabilities. Status report. Office of Scientific and Technical Information (OSTI), July 1986. http://dx.doi.org/10.2172/5496387.
Full textVogel, Curtis R. Computational Methods for Image Reconstruction and Enhancement. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada381745.
Full textRupert, J. D., R. A. F. Grieve, J. F. Halpenny, and V. L. Sharpton. Image enhancement system for the ORCATECH graphics computer. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/315283.
Full textWilson, Gregory L., Andrew C. Lindgren, Thomas M. Fitzgerald, Pamela S. Smith, and Russell C. Hardie. Maximum a Posteriori (MAP) Estimates for Hyperspectral Image Enhancement. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada429581.
Full textYu, Guoshen, Guillermo Sapiro, and Stephane Mallat. Image Modeling and Enhancement via Structured Sparse Model Selection. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada513259.
Full textShin, Jun Seob. Novel techniques for image quality enhancement in ultrasound imaging tomography. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1215813.
Full textFelton, Melvin, and Kristan Gurton. Enhancement of Target Contrast in Polarimetric Imagery Using Image Fusion. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada519582.
Full textSadler, Laurel C. U.S. Army Research Laboratory Image Enhancement Test Bed User's Manual. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada587403.
Full text