Academic literature on the topic 'Image representation methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Image representation methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Image representation methods"
HU, CHAO, LI LIU, BO SUN, and MAX Q. H. MENG. "COMPACT REPRESENTATION AND PANORAMIC REPRESENTATION FOR CAPSULE ENDOSCOPE IMAGES." International Journal of Information Acquisition 06, no. 04 (December 2009): 257–68. http://dx.doi.org/10.1142/s0219878909001989.
Full textCortez, Diogo, Paulo Nunes, Manuel Menezes de Sequeira, and Fernando Pereira. "Image segmentation towards new image representation methods." Signal Processing: Image Communication 6, no. 6 (February 1995): 485–98. http://dx.doi.org/10.1016/0923-5965(94)00031-d.
Full textAl-Obaide, Zahraa H., and Ayad A. Al-Ani. "COMPARISON STUDY BETWEEN IMAGE RETRIEVAL METHODS." Iraqi Journal of Information and Communication Technology 5, no. 1 (April 29, 2022): 16–30. http://dx.doi.org/10.31987/ijict.5.1.182.
Full textChoi, Jaewoong, Daeha Kim, and Byung Cheol Song. "Style-Guided and Disentangled Representation for Robust Image-to-Image Translation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 463–71. http://dx.doi.org/10.1609/aaai.v36i1.19924.
Full textLu, Jiahao, Johan Öfverstedt, Joakim Lindblad, and Nataša Sladoje. "Is image-to-image translation the panacea for multimodal image registration? A comparative study." PLOS ONE 17, no. 11 (November 28, 2022): e0276196. http://dx.doi.org/10.1371/journal.pone.0276196.
Full textRIZO-RODRÍGUEZ, DAYRON, HEYDI MÉNDEZ-VAZQUEZ, and EDEL GARCÍA-REYES. "ILLUMINATION INVARIANT FACE RECOGNITION IN QUATERNION DOMAIN." International Journal of Pattern Recognition and Artificial Intelligence 27, no. 03 (May 2013): 1360004. http://dx.doi.org/10.1142/s0218001413600045.
Full textLu, Xuchao, Li Song, Rong Xie, Xiaokang Yang, and Wenjun Zhang. "Deep Binary Representation for Efficient Image Retrieval." Advances in Multimedia 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8961091.
Full textBouarara, Hadj Ahmed, and Yasmin Bouarara. "Swarm Intelligence Methods for Unsupervised Images Classification." International Journal of Organizational and Collective Intelligence 6, no. 2 (April 2016): 50–74. http://dx.doi.org/10.4018/ijoci.2016040104.
Full textCohen, Ido, Eli David, and Nathan Netanyahu. "Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images." Entropy 21, no. 3 (February 26, 2019): 221. http://dx.doi.org/10.3390/e21030221.
Full textLi, Fengpeng, Jiabao Li, Wei Han, Ruyi Feng, and Lizhe Wang. "Unsupervised Representation High-Resolution Remote Sensing Image Scene Classification via Contrastive Learning Convolutional Neural Network." Photogrammetric Engineering & Remote Sensing 87, no. 8 (August 1, 2021): 577–91. http://dx.doi.org/10.14358/pers.87.8.577.
Full textDissertations / Theses on the topic "Image representation methods"
Chang, William. "Representation Theoretical Methods in Image Processing." Scholarship @ Claremont, 2004. https://scholarship.claremont.edu/hmc_theses/160.
Full textKarmakar, Priyabrata. "Effective and efficient kernel-based image representations for classification and retrieval." Thesis, Federation University Australia, 2018. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/165515.
Full textDoctor of Philosophy
Nygaard, Ranveig. "Shortest path methods in representation and compression of signals and image contours." Doctoral thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1182.
Full textSignal compression is an important problem encountered in many applications. Various techniques have been proposed over the years for adressing the problem. The focus of the dissertation is on signal representation and compression by the use of optimization theory, more shortest path methods.
Several new signal compression algorithms are presented. They are based on the coding of line segments which are used to spproximate, and thereby represent, the signal. These segments are fit in a way that is optimal given some constraints on the solution. By formulating the compession problem as a graph theory problem, shortest path methods can be applied in order to yeild optimal compresson with respect to the given constraints.
The approaches focused on in this dissertaion mainly have their origin in ECG comression and is often referred to as time domain compression methods. Coding by time domain methods is based on the idea of extracting a subset of significant signals samples to represent the signal. The key to a successful algoritm is a good rule for determining the most significant samples. Between any two succeeding samples in the extracted smaple set, different functions are applied in reconstruction of the signal. These functions are fitted in a wy that guaratees minimal reconstruction error under the gien constraints. Two main categories of compression schemes are developed:
1. Interpolating methods, in which it is insisted on equality between the original and reconstructed signal at the points of extraction.
2. Non-interpolating methods, where the inerpolatian restriction is released.
Both first and second order polynomials are used in reconstruction of the signal. There is solso developed an approach were multiple error measures are applied within one compression algorithm.
The approach of extracting the most significant smaples are further developed by measuring the samples in terms of the number of bits needed to encode such samples. This way we develop an approach which is optimal in the ratedistortion sense.
Although the approaches developed are applicable to any type of signal, the focus of this dissertaion is on the compression of electrodiogram (ECG) signals and image contours, ECG signal compression has traditionally been
Sampaio, de Rezende Rafael. "New methods for image classification, image retrieval and semantic correspondence." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE068/document.
Full textThe problem of image representation is at the heart of computer vision. The choice of feature extracted of an image changes according to the task we want to study. Large image retrieval databases demand a compressed global vector representing each image, whereas a semantic segmentation problem requires a clustering map of its pixels. The techniques of machine learning are the main tool used for the construction of these representations. In this manuscript, we address the learning of visual features for three distinct problems: Image retrieval, semantic correspondence and image classification. First, we study the dependency of a Fisher vector representation on the Gaussian mixture model used as its codewords. We introduce the use of multiple Gaussian mixture models for different backgrounds, e.g. different scene categories, and analyze the performance of these representations for object classification and the impact of scene category as a latent variable. Our second approach proposes an extension to the exemplar SVM feature encoding pipeline. We first show that, by replacing the hinge loss by the square loss in the ESVM cost function, similar results in image retrieval can be obtained at a fraction of the computational cost. We call this model square-loss exemplar machine, or SLEM. Secondly, we introduce a kernelized SLEM variant which benefits from the same computational advantages but displays improved performance. We present experiments that establish the performance and efficiency of our methods using a large array of base feature representations and standard image retrieval datasets. Finally, we propose a deep neural network for the problem of establishing semantic correspondence. We employ object proposal boxes as elements for matching and construct an architecture that simultaneously learns the appearance representation and geometric consistency. We propose new geometrical consistency scores tailored to the neural network’s architecture. Our model is trained on image pairs obtained from keypoints of a benchmark dataset and evaluated on several standard datasets, outperforming both recent deep learning architectures and previous methods based on hand-crafted features. We conclude the thesis by highlighting our contributions and suggesting possible future research directions
Budinich, Renato [Verfasser], Gerlind [Akademischer Betreuer] Plonka-Hoch, Gerlind [Gutachter] Plonka-Hoch, and Armin [Gutachter] Iske. "Adaptive Multiscale Methods for Sparse Image Representation and Dictionary Learning / Renato Budinich ; Gutachter: Gerlind Plonka-Hoch, Armin Iske ; Betreuer: Gerlind Plonka-Hoch." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1175625396/34.
Full textJia, Yue Verfasser], Timon [Akademischer Betreuer] Rabczuk, Klaus [Gutachter] [Gürlebeck, and Alessandro [Gutachter] Reali. "Methods based on B-splines for model representation, numerical analysis and image registration / Yue Jia ; Gutachter: Klaus Gürlebeck, Alessandro Reali ; Betreuer: Timon Rabczuk." Weimar : Institut für Strukturmechanik, 2015. http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20151210-24849.
Full textJia, Yue [Verfasser], Timon [Akademischer Betreuer] Rabczuk, Klaus [Gutachter] Gürlebeck, and Alessandro [Gutachter] Reali. "Methods based on B-splines for model representation, numerical analysis and image registration / Yue Jia ; Gutachter: Klaus Gürlebeck, Alessandro Reali ; Betreuer: Timon Rabczuk." Weimar : Institut für Strukturmechanik, 2015. http://d-nb.info/1116366770/34.
Full textSjöberg, Oscar. "Evaluating Image Compression Methods on Two DimensionalHeight Representations." Thesis, Linköpings universitet, Informationskodning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171227.
Full textWei, Qi. "Bayesian fusion of multi-band images : A powerful tool for super-resolution." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14398/1/wei.pdf.
Full textSlobodan, Dražić. "Shape Based Methods for Quantification and Comparison of Object Properties from Their Digital Image Representations." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=107871&source=NDLTD&language=en.
Full textУ тези су размотрени развој, побољшање и евалуација метода за квантитативну карактеризацију објеката приказаних дигиталним сликама, као и мере растојања између дигиталних слика. Методе за квантитативну карактеризацију објеката представљених дигиталним сликама се све више користе у применама у којима грешка може имати критичне последице, а традиционалне методе за квантитативну карактеризацију су мале прецизности и тачности. У тези се показује да се коришћењем информације о покривеност пиксела обликом може значајно побољшати прецизност и тачност оцене растојања између две најудаљеније тачке облика мерено у датом правцу. Веома је пожељно да мера растојања између дигиталних слика може да се веже за одређену особину облика и морфолошке операције се користе приликом дефинисања растојања у ту сврху. Ипак, растојања дефинисана на овај начин показују се недовољно осетљива на релевантне податке дигиталних слика који представљају особине облика. У тези се показује да идеја адаптивне математичке морфологије може успешно да се користи да би се превазишао поменути проблем осетљивости растојања дефинисаних користећи морфолошке операције.
U tezi su razmotreni razvoj, poboljšanje i evaluacija metoda za kvantitativnu karakterizaciju objekata prikazanih digitalnim slikama, kao i mere rastojanja između digitalnih slika. Metode za kvantitativnu karakterizaciju objekata predstavljenih digitalnim slikama se sve više koriste u primenama u kojima greška može imati kritične posledice, a tradicionalne metode za kvantitativnu karakterizaciju su male preciznosti i tačnosti. U tezi se pokazuje da se korišćenjem informacije o pokrivenost piksela oblikom može značajno poboljšati preciznost i tačnost ocene rastojanja između dve najudaljenije tačke oblika mereno u datom pravcu. Veoma je poželjno da mera rastojanja između digitalnih slika može da se veže za određenu osobinu oblika i morfološke operacije se koriste prilikom definisanja rastojanja u tu svrhu. Ipak, rastojanja definisana na ovaj način pokazuju se nedovoljno osetljiva na relevantne podatke digitalnih slika koji predstavljaju osobine oblika. U tezi se pokazuje da ideja adaptivne matematičke morfologije može uspešno da se koristi da bi se prevazišao pomenuti problem osetljivosti rastojanja definisanih koristeći morfološke operacije.
Books on the topic "Image representation methods"
Florack, Luc, Remco Duits, Geurt Jongbloed, Marie-Colette van Lieshout, and Laurie Davies, eds. Mathematical Methods for Signal and Image Analysis and Representation. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2353-8.
Full textRemco, Duits, Jongbloed Geurt, Lieshout Marie-Colette, Davies Laurie, and SpringerLink (Online service), eds. Mathematical Methods for Signal and Image Analysis and Representation. London: Springer London, 2012.
Find full textMartial, Hebert, National Science Foundation (U.S.), and United States. Advanced Research Projects Agency., eds. Object representation in computer vision: International NSF-ARPA Workshop, New York City, NY, USA, December 5-7, 1994 : proceedings. Berlin: Springer, 1995.
Find full textECCV '96 International Workshop (1996 Cambridge, England). Object representation in computer vision II: ECCV '96 International Workshop, Cambridge, UK, April 13-14, 1996 : proceedings. Berlin: Springer, 1996.
Find full textPink, Sarah. Doing visual ethnography: Images, media, and representation in research. London: Sage, 2001.
Find full textDoing visual ethnography: Images, media and representation in research. 2nd ed. London: SAGE, 2007.
Find full textDoing visual ethnography: Images, media, and representation in research. London: Sage, 2001.
Find full textDibazar, Pedram, and Judith Naeff, eds. Visualizing the Street. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462984356.
Full textRobert, Hopkins. Picture, image and experience: A philosophical inquiry. Cambridge: Cambridge University Press, 1998.
Find full textPicture, image and experience: A philosophical inquiry. Cambridge: Cambridge University Press, 1998.
Find full textBook chapters on the topic "Image representation methods"
Kanatani, Kenichi. "Representation of 3D Rotations." In Group-Theoretical Methods in Image Understanding, 197–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61275-6_6.
Full textRosário Lucas, Luís Filipe, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, and Carla Liberal Pagliari. "Sparse Representation Methods for Image Prediction." In Efficient Predictive Algorithms for Image Compression, 97–115. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51180-1_5.
Full textDeCost, Brian L., and Elizabeth A. Holm. "Computer Vision for Microstructural Image Representation: Methods and Applications." In Statistical Methods for Materials Science, 241–58. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781315121062-18.
Full textZhang, Qinghui, and Yi Chen. "A Survey of Literature Analysis Methods Based on Representation Learning." In Image and Graphics Technologies and Applications, 249–63. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5096-4_19.
Full textDobrosotskaya, J., M. Ehler, E. King, R. Bonner, and W. Czaja. "Sparse Representation and Variational Methods in Retinal Image Processing." In IFMBE Proceedings, 361–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14998-6_92.
Full textPark, Chul-Hyun, Joon-Jae Lee, Sang-Keun Oh, Young-Chul Song, Doo-Hyun Choi, and Kil-Houm Park. "Iris Feature Extraction and Matching Based on Multiscale and Directional Image Representation." In Scale Space Methods in Computer Vision, 576–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44935-3_40.
Full textZhou, Bolei. "Interpreting Generative Adversarial Networks for Interactive Image Generation." In xxAI - Beyond Explainable AI, 167–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04083-2_9.
Full textAshour, Mohammed W., Fatimah Khalid, Alfian Abdul Halin, Samy H. Darwish, and M. M. Abdulrazzaq. "A Review on Steel Surface Image Features Extraction and Representation Methods." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 239–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60036-5_17.
Full textDeng, Limiao. "Research on insect pest image detection and recognition based on bio-inspired methods." In Cognitive and Neural Modelling for Visual Information Representation and Memorization, 205–24. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281641-8.
Full textPajarola, Renato, Susanne K. Suter, Rafael Ballester-Ripoll, and Haiyan Yang. "Tensor Approximation for Multidimensional and Multivariate Data." In Mathematics and Visualization, 73–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_4.
Full textConference papers on the topic "Image representation methods"
Xie, Ruobing, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. "Image-embodied Knowledge Representation Learning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/438.
Full textBouyerbou, H., S. Oukid, N. Benblidia, and K. Bechkoum. "Hybrid image representation methods for automatic image annotation: A survey." In 2012 International Conference on Signals and Electronic Systems (ICSES 2012). IEEE, 2012. http://dx.doi.org/10.1109/icses.2012.6382246.
Full textTan, Ruiguang. "Research methods of product perceptual image recognition in Kansei Engineering." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001764.
Full textXiaojie Huang, Ben A. Lin, Colin B. Compas, Albert J. Sinusas, Lawrence H. Staib, and James S. Duncan. "Segmentation of left ventricles from echocardiographic sequences via sparse appearance representation." In 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). IEEE, 2012. http://dx.doi.org/10.1109/mmbia.2012.6164769.
Full textÖzay, Evrim Korkmaz, and Metin Demiralp. "Combined small scale enhanced multivariance product representation (CSSEMPR) for image reconstruction." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938938.
Full textBui, Manh-Quan, Viet-Hang Duong, Yung-Hui Li, Tzu-Chiang Tai, and Jia-Ching Wang. "Image Representation Using Supervised and Unsupervised Learning Methods on Complex Domain." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462222.
Full textEichmann, G., and M. Jankowski. "Surface Representation and Shape Description of Solid Bodies." In Machine Vision. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/mv.1987.fb5.
Full textKim, Seung-Goo, Moo K. Chung, Stacey M. Schaefer, Carien van Reekum, and Richard J. Davidson. "Sparse shape representation using the Laplace-Beltrami eigenfunctions and its application to modeling subcortical structures." In 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). IEEE, 2012. http://dx.doi.org/10.1109/mmbia.2012.6164736.
Full textZhao, Sicheng, Guiguang Ding, Qingming Huang, Tat-Seng Chua, Björn W. Schuller, and Kurt Keutzer. "Affective Image Content Analysis: A Comprehensive Survey." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/780.
Full textChen, Tianshui, Liang Lin, Riquan Chen, Yang Wu, and Xiaonan Luo. "Knowledge-Embedded Representation Learning for Fine-Grained Image Recognition." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/87.
Full textReports on the topic "Image representation methods"
Varastehpour, Soheil, Hamid Sharifzadeh, and Iman Ardekani. A Comprehensive Review of Deep Learning Algorithms. Unitec ePress, 2021. http://dx.doi.org/10.34074/ocds.092.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text