Contents
Academic literature on the topic 'Imagerie micro-ondes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Imagerie micro-ondes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Imagerie micro-ondes"
-BOLOMEY, Jean-Charles. "Métrologie et contrôle non-destructif de produits en défilement par imagerie micro-ondes." Revue de l'Electricité et de l'Electronique -, no. 06 (1996): 43. http://dx.doi.org/10.3845/ree.1996.073.
Full textDissertations / Theses on the topic "Imagerie micro-ondes"
VIGNAUD, LUC. "Imagerie micro-ondes des scenes instationnaires." Paris 6, 1996. http://www.theses.fr/1996PA066431.
Full textHeleine, Jérémy. "Identification de paramètres électromagnétiques par imagerie micro-ondes." Thesis, Amiens, 2019. http://www.theses.fr/2019AMIE0013.
Full textIn this thesis, we study, from a theoretical and numerical point of view, the microwave imaging. Mathematically, it is about solving an inverse problem: reconstruct the dielectric coefficients (permittivity and conductivity) inside a material or tissue from boundary measurements of the electric field. This problem is modeled by time-harmonic Maxwell's equations for the electric field for which we prove the existence and uniqueness of a solution in the case of mix boundary conditions. We are particularly interested in the reconstruction of perturbations in the refractive index of the medium. The index of the healthy medium is assumed to be known and, with the help of boundary measurements on the studied object, we define the perturbed field and try to find the perturbations. In order to understand their influence on the electric field, we lead a sensitivity analysis of Maxwell's equations. The numerical study of this sensitivity analysis led to results used to develop a reconstruction algorithm of the perturbations supports. We then study the Cauchy problem, to solve a uniqueness result with partial data. We are also interested in the numerical resolution of this problem to answer the question of the boundary data completion: from partial measurements, we deduce the total data. The inverse problem is finally studied as the minimization of a functional to reconstruct the amplitude of the searched inhomogeneities
Tondo, Yoya Ariel Christopher. "Imagerie computationnelle active et passive à l’aide d’une cavité chaotique micro-ondes." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S130/document.
Full textThe broad topic of the presented Ph.D focuses on active and passive microwave computational imaging. The use of a chaotic cavity as a compressive component is studied both theoretically (mathematical model, algorithmic resolution of the inverse problem) and experimentally. The underlying idea is to replace an array of antennas with a single reverberant cavity with an array of openings on the front panel that encodes the spatial information of a scene in the temporal response of the cavity. The reverberation of electromagnetic waves inside the cavity provides the degrees of freedom necessary to reconstruct an image of the scene. Thus it is possible to create a high-resolution image of a scene in real time from a single impulse response. Applications include security or imaging through walls. In this work, the design and characterization of an open chaotic cavity is performed. Using this device, active computational imaging is demonstrated to produce images of targets of various shapes. The number of degrees of freedom is further improved by changing the boundary conditions with the addition of commercial fluorescent lamps. The interaction of the waves with these plasma elements allows new cavity configurations to be created, thus improving image resolution. Compressive imaging is next applied to the passive detection and localization of natural thermal radiation from noise sources, based on the correlation of signals received over two channels. Finally, an innovative method of interferometric target imaging is presented. It is based on the reconstruction of the impulse response between two antennas from the microwave thermal noise emitted by a network of neon lamps. This work constitutes a step towards for future imaging systems
Laloy-Borgna, Gabrielle. "Micro-élastographie : caractérisation mécanique de la cellule par ondes élastiques." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10058.
Full textDyanmic elastography is an imaging method to measure the elasticity of biological tissues in a non-invasive and quantitative way. Recently, the transposition of the technique to a small scale has been called dynamic micro-elastography and has allowed the first measurements of cellular elasticity by shear waves using an optical microscope. This thesis aims to undetstand the limits of this technique and to develop new micro-elastography methods, to test new wave sources but also potential applications of the technique. In a first step, the dispersion of shear waves was studied on gelatin phantoms. Two distinct regimes of guided elastic waves and shear waves were identified. The high-frequency limit of wave propagation was also explored, establishing the existence of a cutoff frequency which explains the absence of ultrasonic shear imaging. The same approach was then applied to visco-elastic fluids, revealing two cutoff frequencies and revisiting previous studies on rheology and wave propagation in this type of medium. Then, the initial objective being to carry out micro-elastography on single cells and the experiments previously carried out with micro-pipettes presenting certain defects, an original method of cellular micro-elastography was developed. An oscillating microbubble is used as a contactless shear wave source at 15 kHz to perform experiments on blood cells whose diameter is about 15 µm. These are the smallest objects ever explored by elastography. Larger objects, cell clusters of a few tens of thousands of cells have also been studied. Indeed, since ultrasound elastography of these tumour models of about 800 µm in diameter is impossible, optical micro-elastography is a suitable technique. These samples contain magnetic nanoparticles, so a magnetic pulse could be used as a wave source. Previously, proofs of concept on both macroscopic (in ultrasonic elastography) and microscopic (in optical micro-elastography) phantoms were conducted to validate the use of this diffuse field source. Finally, pulse wave measurements were performed on retinal arteries of about 50 µm in diameter using laser Doppler holography acquisitions performed in vivo. The application of monochromatic correlation algorithms allowed the measurement of guided wave velocities, finally revealing the existence of a second pulse wave, an antisymmetric bending wave. This guided wave, much slower than the axisymmetric pulse wave studied so far, was also observed on the carotid artery thanks to ultrafast ultrasound acquisitions
Gharsalli, Leila. "Approches bayésiennes en tomographie micro-ondes : applications à l'imagerie du cancer du sein." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112048/document.
Full textThis work concerns the problem of microwave tomography for application to biomedical imaging. The aim is to retreive both permittivity and conductivity of an unknown object from measurements of the scattered field that results from its interaction with a known interrogating wave. Such a problem is said to be inverse opposed to the associated forward problem that consists in calculating the scattered field while the interrogating wave and the object are known. The resolution of the inverse problem requires the prior construction of the associated forward model. This latter is based on an integral representation of the electric field resulting in two coupled integral equations whose discrete counterparts are obtained by means of the method of moments.Regarding the inverse problem, in addition to the fact that the physical equations involved in the forward modeling make it nonlinear, it is also mathematically ill-posed in the sense of Hadamard, which means that the conditions of existence, uniqueness and stability of the solution are not simultaneously guaranteed. Hence, solving this problem requires its prior regularization which usually involves the introduction of a priori information on the sought solution. This resolution is done here in a Bayesian probabilistic framework where we introduced a priori knowledge appropriate to the sought object by considering it to be composed of a finite number of homogeneous materials distributed in compact and homogeneous regions. This information is introduced through a "Gauss-Markov-Potts" model. In addition, the Bayesian computation gives the posterior distribution of all the unknowns, knowing the a priori and the object. We proceed then to identify the posterior estimators via variational approximation methods and thereby to reconstruct the image of the desired object.The main contributions of this work are methodological and algorithmic. They are illustrated by an application of microwave imaging to breast cancer detection. The latter is in itself a very important and original aspect of the thesis. Indeed, the detection of breast cancer using microwave imaging is a very interesting alternative to X-ray mammography, but it is still at an exploratory stage
Davy, Matthieu. "Application du retournement en micro-ondes à l'amplification d'impulsions et l'imagerie." Phd thesis, Paris 7, 2010. http://www.theses.fr/2010PA077219.
Full textTime Reversal (TR) methods are applied in microwaves to pulse amplification and imaging. First, we use a reverberation chamber with an aperture on the front face and we take advantage of the pulse compression property of time reversal. High amplitude peaks are generated outside the chamber thanks to the long spreading time of the signals inside. Our device is auto-adaptive in position and in polarization. The second part of the manuscript deals theoretically and experimentally with the DORT method (decomposition of the TR operator). The method is first applied to characterize a dielectric cylinder and work out its parameters. Imaging of two close scatterers separated by a subwavelength distance is then considered. A criterion is especially extracted to deduce the noise level above which the resolution fails. Furthermore, we use thé DORT method to track experimentally people behind a wall. The wave propagation inside the wall is taken into account to localize a human being. This last part leads to the study of the invariants of the TR operator when a pointlike target is moving during the acquisition of the transfer matrix. Eventually, we introduce thé first wideband ambient noise cross-correlation experiment in microwaves. The cross-correlation yields the Green's function between two antennas and allows the passive detection and localization of targets. The analogy with a TR process is developed. Passive people localization is also achieved with the narrow bandwidth signals emitted by a WIFI router
Henry, Dominique. "Imagerie radar en ondes millimétriques appliquée à la viticulture." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/23535/1/HENRY_Dominique.pdf.
Full textAntunes, Neves Ana Luisa. "Application au domaine biomédical des moyens de caractérisation électromagnétique de matériaux dans le spectre des micro-ondes." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0320/document.
Full textThe penetration capacity of the electromagnetic (EM) waves in matter or biological tissues allows exploring media non-destructively. Concerning the public health sector, improving the quality of life has become one of the greatest concerns of nowadays society. EM wave research on different media and biological tissues shows a great potential for diagnostic applications and eventually for therapeutically applications. In this doctoral thesis, we focus on the vast domain of the biomedical applications of wave-matter interactions, based on the knowledge of the electromagnetic properties of matter, the complex permittivity and the conductivity. On a first instance, we address the emerging domain of ultra-high field MRI (Magnetic Resonance Imaging), which nowadays puts effort into the clinical implementation of 7T devices. Firstly our purpose is to produce an anthropomorphic head model, composed of the brain’s different layers, and taking into account the electromagnetic properties and the proton relaxation times inherent to each tissue. These realistic head models allow to evaluate the newly developed protocols for these ultra-high field devices. Secondly, we have studied and developed field homogenization devices, which allow brightening the shadow areas displayed in some MRI images, such as the cerebellum and the temporal lobes in brain imaging at 7T. This procedure, named Passive Shimming, is based on the use of high permittivity dielectric pads composed of Barium Titanate, which focalize the field to the areas where normally the wavelength in insufficient to generate a homogeneous signal distribution
Benzaim, Oussama. "Techniques multi-port pour la conception et la réalisation de systèmes micro-ondes dédiés à l'évaluation non destructive de matériaux." Electronic Thesis or Diss., Lille 1, 2009. http://www.theses.fr/2009LIL10031.
Full textNon Destructive microwave Testing (NDT) consists in examining a material so that after testing, its future use is not affected. Such characterization is usually achieved through the measurement of reflection and/or transmission properties of the material under test by a vector network analyzer. However, this type of equipment is oversized in terms of measurements abilities and cost for a use outside the laboratory. In order to overcome this limitation, we have developed, with a view to low cost, systems based on the six-port technique. In particular, a dual four-port reflectometer is developed for the measurement of reflection and transmission parameters of passive devices in the frequency range of 55 - 65 GHz. In addition, we have proposed complete solution which integrates hardware and software resources allowing the development of specialized systems in the field of microwave characterization. The added software solutions, based on artificial neural networks contribute to satisfy the needs of a non-destructive, quantitative evaluation. Finally, in order to perform characterization of defects whose dimensions are smaller than the wavelength, a mm-wave microscope formed by the mm-wave system and associated with an evanescent wave probe has been proposed. This ensemble reveals changes in magnitude and phase reflection coefficients of the material under test, allowing non-contact measurements. ___________________________________________________________________________
Benzaim, Oussama. "Techniques multi-port pour la conception et la réalisation de systèmes micro-ondes dédiés à l'évaluation non destructive de matériaux." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10031/document.
Full textNon Destructive microwave Testing (NDT) consists in examining a material so that after testing, its future use is not affected. Such characterization is usually achieved through the measurement of reflection and/or transmission properties of the material under test by a vector network analyzer. However, this type of equipment is oversized in terms of measurements abilities and cost for a use outside the laboratory. In order to overcome this limitation, we have developed, with a view to low cost, systems based on the six-port technique. In particular, a dual four-port reflectometer is developed for the measurement of reflection and transmission parameters of passive devices in the frequency range of 55 - 65 GHz. In addition, we have proposed complete solution which integrates hardware and software resources allowing the development of specialized systems in the field of microwave characterization. The added software solutions, based on artificial neural networks contribute to satisfy the needs of a non-destructive, quantitative evaluation. Finally, in order to perform characterization of defects whose dimensions are smaller than the wavelength, a mm-wave microscope formed by the mm-wave system and associated with an evanescent wave probe has been proposed. This ensemble reveals changes in magnitude and phase reflection coefficients of the material under test, allowing non-contact measurements. ___________________________________________________________________________