Academic literature on the topic 'Imaging artefact'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Imaging artefact.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Imaging artefact"

1

GANAPATHI, M., G. JOSEPH, R. SAVAGE, A. R. JONES, B. TIMMS, and K. LYONS. "MRI Susceptibility Artefacts Related to Scaphoid Screws: the Effect of Screw Type, Screw Orientation and Imaging Parameters." Journal of Hand Surgery 27, no. 2 (April 2002): 165–70. http://dx.doi.org/10.1054/jhsb.2001.0717.

Full text
Abstract:
Metal implants produce susceptibility artefacts in magnetic resonance imaging. We have explored the effects of scaphoid screw characteristics and orientation on MR susceptibility artefact. Titanium alloy, smallness and longitudinal alignment with the z-axis of the main magnetic field reduce the size of the susceptibility artefact.
APA, Harvard, Vancouver, ISO, and other styles
2

Tran, Lan Thi Xuan, Junichiro Sakamoto, Ami Kuribayashi, Hiroshi Watanabe, Hiroshi Tomisato, and Tohru Kurabayashi. "Quantitative evaluation of artefact reduction from metallic dental materials in short tau inversion recovery imaging: efficacy of syngo WARP at 3.0 tesla." Dentomaxillofacial Radiology 48, no. 7 (October 2019): 20190036. http://dx.doi.org/10.1259/dmfr.20190036.

Full text
Abstract:
Objectives: To evaluate the effects of syngo WARP on reducing metal artefacts from dental materials. Methods: Short tau inversion recovery (STIR) with syngo WARP [a dedicated metal artefact reduction sequence in combination with view-angle-tilting (VAT)] was performed using phantoms of three dental alloys: cobalt–chromium (Co–Cr), nickel–chromium (Ni–Cr), and titanium (Ti). Artefact volumes and reduction ratios of black, white and overall artefacts in the standard STIR and syngo WARP images with several different parameter settings were quantified according to standards of the American Society for Testing and Materials F2119-07. In all sequences, the artefact volumes and reduction ratios were compared. The modulation transfer function (MTF) and contrast-to-noise ratio (CNR) were also measured for evaluation of image quality. Results: In standard STIR, the overall artefact volume of Co–Cr was markedly larger than those of Ni–Cr and Ti. All types of artefacts tended to be reduced with increasing receiver bandwidth (rBW) and VAT. The effect of artefact reduction tended to be more obvious in the axial plane than in the sagittal plane. Compared with standard STIR, syngo WARP with a matrix of 384 × 384, receiver bandwidth of 620 Hz/pixel, and VAT of 100 % in the axial plane obtained reduction effects of 30 % (white artefacts), 45 % (black artefacts), and 38 % (overall artefacts) although MTF and CNR decreased by 30 and 22 % compared with those of standard STIR, respectively. Conclusions: syngo WARP for STIR can effectively reduce metal artefacts from dental materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Illanes, Alfredo, Johannes W. Krug, and Michael Friebe. "Assessing MRI susceptibility artefact through an indicator of image distortion." Current Directions in Biomedical Engineering 2, no. 1 (September 1, 2016): 427–31. http://dx.doi.org/10.1515/cdbme-2016-0095.

Full text
Abstract:
AbstractSusceptibility artefacts in magnetic resonance imaging (MRI) caused by medical devices can result in a severe degradation of the MR image quality. The quantification of susceptibility artefacts is regulated by the ASTM standard which defines a manual method to assess the size of an artefact. This means that the estimated artefact size can be user dependent. To cope with this problem, we propose an algorithm to automatically quantify the size of such susceptibility artefacts. The algorithm is based on the analysis of a 3D surface generated from the 2D MR images. The results obtained by the automatic algorithm were compared to the manual measurements performed by study participants. The results show that the automatic and manual measurements follow the same trend. The clear advantage of the automated algorithm is the absence of the inter- and intra-observer variability. In addition, the algorithm also detects the slice containing the largest artefact which was not the case for the manual measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Erasmus, L. J., D. Hurter, M. Naude, H. G. Kritzinger, and S. Acho. "A short overview of MRI artefacts." South African Journal of Radiology 8, no. 2 (June 9, 2004): 13. http://dx.doi.org/10.4102/sajr.v8i2.127.

Full text
Abstract:
Many different artefacts can occur during magnetic resonance imaging (MRI), some affecting the diagnostic quality, while others may be confused with pathology. An artefact is a feature appearing in an image that is not present in the original object. Artefacts can be classified as patient related, signal processing-dependent and hardware (machine)-related.This article presents an overview of MRI artefacts and possible rectifying methods.
APA, Harvard, Vancouver, ISO, and other styles
5

DU CRET, RENÉ P., ROBERT J. BOUDREAU, FRANK P. MAGUIRE, and SANDRA J. ALTHAUS. "Sigmoid Augmentation Artefact in Skeletal Imaging." Clinical Nuclear Medicine 13, no. 5 (May 1988): 375. http://dx.doi.org/10.1097/00003072-198805000-00021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martins, Luciano Augusto Cano, Polyane Mazucatto Queiroz, Yuri Nejaim, Karla de Faria Vasconcelos, Francisco Carlos Groppo, and Francisco Haiter-Neto. "Evaluation of metal artefacts for two CBCT devices with a new dental arch phantom." Dentomaxillofacial Radiology 49, no. 5 (July 2020): 20190385. http://dx.doi.org/10.1259/dmfr.20190385.

Full text
Abstract:
Objectives: To create a new phantom design to evaluate the real impact of artefacts caused by titanium on bone structures in cone beam CT images considering different positions and quantity of metals in the dental arch, with and without metal artefact reduction (MAR). Methods: A three cylindrical polymethyl methacrylate (PMMA) plate phantom was designed containing eight perforations arranged to simulate the lower dental arch in the intermediate plate. Three titanium cylinders were positioned in different locations and quantities to test different clinical conditions and to quantify the impact of the metal artefact around five bone cylinders. Scans were carried out in seven different protocols (Control, A-F) in two cone beam CT devices (OP300 Maxio and Picasso Trio). Eight regions of interest around each cortical and trabecular bone were used to measure the grey value standard deviation corresponding the artefact expression in the Image J software. Both the artefact expression and the MAR effect were assessed using the Wilcoxon, Friedman (Dunn) and Kruskal–Wallis tests (significance level of 5%). Results: For both devices, MAR was statistically efficient only for the protocols E, and F. Protocol F (three metals on the adjacent area of the analysis region) showed higher artefact expression when compared to the others. Conclusion: In conclusion, the new phantom design allowed the quantification of the metal artefact expression caused by titanium. The metal artefact expression is higher when more metal objects are positioned in the adjacent bone structures. MAR may not be effective to reduce artefact expression on the adjacencies of those objects for the devices studied.
APA, Harvard, Vancouver, ISO, and other styles
7

Yue Lee, Francis Chun, Christian Jenssen, and Christoph F. Dietrich. "A common misunderstanding in lung ultrasound: the comet tail artefact." Medical Ultrasonography 20, no. 3 (August 30, 2018): 379. http://dx.doi.org/10.11152/mu-1573.

Full text
Abstract:
The comet tail artefact is probably one of the most commonly and imprecisely used to describe vertical artefacts found in lung ultrasound. Two distinct artefacts are commonly observed: the lung comets and the B-lines. Both artefacts differ with regard to generation mechanism and clinical significance. This review explores the current understanding and use of these two artefacts in lung ultrasound and suggests how to avoid the pitfalls related to confusing comet tail artefacts with other vertical artefacts.
APA, Harvard, Vancouver, ISO, and other styles
8

Mahon, Ciara, Peter Gatehouse, John Baksi, and Raad H. Mohiaddin. "The mysterious needle in the heart: a case report." European Heart Journal - Case Reports 4, no. 3 (May 3, 2020): 1–4. http://dx.doi.org/10.1093/ehjcr/ytaa083.

Full text
Abstract:
Abstract Background A 53-year-old female with dyspnoea and atypical chest pain. Her electrocardiogram demonstrated a left bundle branch block, transthoracic echocardiogram demonstrated a mildly impaired left ventricle ejection fraction, and coronary angiogram revealed unobstructed coronary arteries. She was referred for cardiovascular magnetic resonance (CMR) for structural and functional assessment. Her imaging revealed an unexpected finding of an off-resonance artefact within the ventricle wall. This material was secondary to a ferromagnetic material. Case summary Chest X ray and computer tomography confirmed a needle-shaped structure in the ventricle wall. Understanding the basis of this off-resonance artefact aided in a new diagnosis, raised questions on the origin of the material, patient safety, and implementation of corrective strategies to optimize image acquisition. Discussion The continued development of CMR is revolutionizing our ability to establish diagnosis and guide patient treatment. The CMR sequences can be prone to artefact. This case highlights the importance of understanding the basis of CMR artefacts.
APA, Harvard, Vancouver, ISO, and other styles
9

Pitman, A. G., V. Kalff, B. Van Every, B. Risa, L. R. Barnden, and M. J. Kelly. "19. Is respiratory motion artefact independent of attenuation artefact?" Nuclear Medicine Communications 22, no. 8 (August 2001): 924. http://dx.doi.org/10.1097/00006231-200108000-00029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buchanan, Allison, Carla Morales, Stephen Looney, and Sajitha Kalathingal. "Fish scale artefact on an intraoral imaging receptor." Dentomaxillofacial Radiology 46, no. 8 (December 2017): 20170224. http://dx.doi.org/10.1259/dmfr.20170224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Imaging artefact"

1

Yildiz, Yesna. "Nonlinear propagation artefact correction in contrast enhanced ultrasound imaging." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/52435.

Full text
Abstract:
In contrast enhanced ultrasound images (CEUS) that use microbubbles, nonlinear propagation of ultrasound creates artefacts which significantly impact the qualitative and quantitative assessments of tissue perfusion. Such artefact originates from tissue reflecting/scattering nonlinearly propagated ultrasound pulse. Consequently such tissue is misclassified as microbubbles which also generate nonlinear signals. This thesis reports the development and evaluation of an algorithm to reduce the nonlinear propagation artefact in CEUS. The method was evaluated in simulations, and on in vitro and in vivo data at both high and low ultrasound frequencies. Ways to further improve the performance of the method were also investigated. Firstly, the artefact correction algorithm was developed. The algorithm makes use of two independent datasets that are acquired simultaneously during CEUS; the Bmode image, which is dominated by tissue information, and the contrast specific image, which contains information on blood (signal) due to microbubbles, but confounded with some amount of tissue signals (artefact). The unwanted tissue contribution of the contrast specific image is reconstructed by estimating the two components that make up this contribution, namely, the underlying tissue distribution and the nonlinear point spread function (PSF) of the imaging system. To initially evaluate the algorithm, a simulation platform was developed to study artefact generation at various Mechanical Indices (MI), microbubble concentrations and frequencies. The algorithm was then evaluated using the simulation data. The results show that the algorithm is able to reduce the nonlinear propagation artefact at different MI, concentration and frequency under both ideal and noisy conditions. Next, artefact correction was applied to carotid artery imaging. The performance of the algorithm was evaluated using flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces nonlinear artefacts while maintaining the contrast signal from bubbles to increase the contrast to tissue ratio (CTR) by up to 11 dB. Contrast signal from a small vessel of 600 µm in diameter buried in tissue artefacts prior to correction is recovered after the correction. The algorithm was then evaluated using in vivo CEUS data acquired on patients’ carotid arteries. The algorithm is able to increase the CTR at the far-wall by up to 7.4 dB in vivo. Artefact correction was then improved by taking the spatial variance of the ultrasound field into account and improving the nonlinear PSF estimation. The new version of the algorithm was tested on in vitro and in vivo data and the improvements verified. The new version of the algorithm provides an additional increase in CTR by up to 5.4 dB in the far field, 4.3 dB at focus and 3.2 dB in the near field for the in vitro data over previous results. The additional increase in CTR for the in vivo data is up to 4 dB more in the near field and 5 dB more in the far field over the previous results. Nonlinear propagation correction was also applied to deep tissue imaging where lower ultrasound frequency than carotid imaging was used. The algorithm could suppress tissue signal more than 6 dB. However, due to the strong presence of the microbubbles in the B-mode image at low frequencies, the algorithm reduces microbubble signal by up to 2 dB. The resulting increase in CTR is up to 4 dB under specific imaging conditions. However, depending on the imaging geometry and acquisition settings used, it could fail to produce an increase in CTR. A possible future direction is to combine the algorithm with an attenuation correction method to improve perfusion quantification. The clinical efficacy of the combined nonlinear propagation and attenuation correction could be evaluated. Given that the method is purely post-processing, it is easier to implement it on current commercial scanners than some other existing techniques. The implementation of the algorithm using GPUs could be investigated and could possibly instigate translation into clinics.
APA, Harvard, Vancouver, ISO, and other styles
2

Meißner, Mirko [Verfasser], and Jürgen [Akademischer Betreuer] Hennig. "Chemical Shift Artefact Correction in 19F Magnetic Resonance Imaging = Korrektur des Artefakts der Chemischen Verschiebung in der 19F Magnetresonanzbildgebung." Freiburg : Universität, 2014. http://d-nb.info/1123478813/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Del, Castello Mariangela. "Analysis of electroencephalography signals collected in a magnetic resonance environment: characterisation of the ballistocardiographic artefact." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13214/.

Full text
Abstract:
L’acquisizione simultanea di segnali elettroencefalografici (EEG) e immagini di risonanza magnetica funzionale (fMRI) permette di investigare attivazioni cerebrali in modo non invasivo. La presenza del campo magnetico altera però in modo non trascurabile la qualità dei segnali EEG acquisiti. In particolare due artefatti sono stati individuati: l’artefatto da gradiente e l’artefatto da ballistocardiogramma (BCG). L’artefatto da BCG è legato all’attività cardiaca del soggetto, ed è caratterizzato da elevata variabilità tra un’occorrenza e l’altra in termini di ampiezza, forma d’onda e durata dell’artefatto. Differenti algoritmi sono stati implementati al fine di rimuoverlo, ma la rimozione completa rimane ancora un difficile obiettivo da raggiungere a causa della sua complessa natura. L’argomento della tesi riguarda l’analisi di segnali EEG acquisiti in ambiente di risonanza magnetica e la caratterizzazione dell’artefatto BCG. L’obiettivo è individuare ulteriori caratteristiche dell’artefatto che possano condurre al miglioramento dei precedenti metodi, o all’implementazione di nuovi. Con questa tesi abbiamo mostrato quali sono i motivi che causano la presenza di residui artefattuali nei segnali EEG processati con i metodi presenti in letteratura. Attraverso analisi statistica abbiamo riscontrato che occorrenze dell’artefatto BCG sono caratterizzate da un ritardo variabile rispetto al picco R sull’ECG, che nella nostra analisi rappresenta l’evento di riferimento nell’attività cardiaca. Abbiamo inoltre trovato che il ritardo R-BCG varia con la frequenza cardiaca. Le successive valutazioni riguardano i maggiori contributi all’artefatto BCG. Attraverso l’analisi alle componenti principali, sono stati individuati due contributi legati al fluire del sangue dal cuore verso il cervello e alla sua pulsatilità nei vasi principali dello scalpo.
APA, Harvard, Vancouver, ISO, and other styles
4

Marcoň, Petr. "Analýza vybraných artefaktů v difuzních magneticko-rezonančních měřeních." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-233601.

Full text
Abstract:
The presented dissertation thesis analyses artefacts in diffusion-weighted images. In medical practice, the artefacts can impede the diagnostics of pathological tissues and, therefore, need to be eliminated. As the first step within the thesis, an analysis of the most frequent artefacts in diffusion-weighted images is performed, and the hitherto known approaches to artefact elimination are described. In order to facilitate the reduction of artefacts caused by the inhomogeneity of the static magnetic field and induced by eddy currents, a novel three-measurement method is shown. This technique will find application especially in measuring the diffusion coefficient of isotropic materials. At this point, it is important to note that a significant and commonly found problem is the magnetic susceptibility artefact; different magnetic susceptibility values at the boundary between two materials can cause magnetic field inhomogeneities and even complete loss of the signal. Therefore, we designed a novel method for the measurement of magnetic susceptibility in various samples of magnetically incompatible materials, which do not produce any MR signal. The technique was experimentally verified using a set of differently shaped diamagnetic and paramagnetic samples. In addition to the magnetic susceptibility problem, the thesis presents artefacts such as noise, motion-induced items, hardware limitations, chemical shift, and the dependence of the diffusion coefficient on the temperature. To enable precise measurement of the diffusion coefficient, we proposed a thermal system; in the experiment, it was determined that when the measurement error does not exceed 5%, the temperature change should not be higher than 0,1 °C. In the final sections of the thesis, practical application examples involving the designed methods are shown.
APA, Harvard, Vancouver, ISO, and other styles
5

Kraft, Sandra. "Routine Development for Artefact Correction and Information Extraction from Diffusion Weighted Echo Planar Images of Rats." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190993.

Full text
Abstract:
Biologists and physicians study complex biologic phenomena in which they use advanced imaging methods. They acquire images containing a lot of information which must be extracted in a correct way. This requires computer skills and knowledge in image processing methods which they seldom have. To overcome the problem, this master thesis aimed to develop a routine for artefact correction and information extraction from images acquired in a research project at the Karolinska Institutet in Stockholm. By developing the routine, the thesis showed how software developed for images of human can be applied to images of rats. The routine handles formatting issues and artefact corrections, calculates diffusion metrics, and performs statistical tests on spatially aligned magnetic resonance images of rats acquired with diffusion weighted echo planar imaging. The routine was verified by analysing the images that it had processed and was considered to create reliable images. Future studies within the field should focus on developing atlases of rats and continue the work with identifying how software developed for images of human can be applied to images of rats.
Biologer och läkare studerar komplexa biologiska processer för vilket de använder avancerade bildgivande metoder. De samlar bilder som innehåller mycket information vilken måste extraheras på ett korrekt sätt. Detta kräver god datorvana och kunskaper inom bildprocessning, vilket de sällan har. För att komma runt problemet, syftade den här masteruppsattsen till att utveckla en rutin för artefaktkorrigering och informationsextrahering från bilder tagna i ett forskningsprojekt vid Karolinska Institutet i Stockholm. Genom att utveckla rutinen, visar uppsattsen hur mjukvaror utvecklade för bilder av människa kan appliceras på bilder av råtta. Rutinen hanterar formatteringsproblem och artefaktkorrigering, beräknar diffusionsmått, och utför statistiska tester på spatiellt matchade magnetresonansavbildningar tagna med diffusionsviktade ekoplana metoder. Rutinen verifierades genom att analysera bilder som den processat och det konstaterades att den skapar korrekta bilder. Framtida studier inom området bör fokusera på att utveckla atlaser av råttor och fortsätta identifieringen av hur mjukvaror utvecklade för bilder av människa kan appliceras på bilder av råtta.
APA, Harvard, Vancouver, ISO, and other styles
6

Nell, Raymond D. "Three dimensional depth visualization using image sensing to detect artefact in space." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1199.

Full text
Abstract:
Thesis submitted in fulfilment of the requirements for the degree Doctor of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2014
Three-dimensional (3D) artefact detection can provide the conception of vision and real time interaction of electronic products with devices. The orientation and interaction of electrical systems with objects can be obtained. The introduction of electronic vision detection can be used in multiple applications, from industry, in robotics and also to give orientation to humans to their immediate surroundings. An article covering holograms states that these images can provide information about an object that can be examined from different angles. The limitations of a hologram are that there must be absolute immobilization of the object and the image system. Humans are capable of stereoscopic vision where two images are fused together to provide a 3D view of an object. In this research, two digital images are used to determine the artefact position in space. The application of a camera is utilized and the 3D coordinates of the artefact are determined. To obtain the 3D position, the principles of the pinhole camera, a single lens as well as two image visualizations are applied. This study explains the method used to determine the artefact position in space. To obtain the 3D position of an artefact with a single image was derived. The mathematical formulae are derived to determine the 3D position of an artefact in space and these formulae are applied in the pinhole camera setup to determine the 3D position. The application is also applied in the X-ray spectrum, where the length of structures can be obtained using the mathematical principles derived. The XYZ coordinates are determined, a computer simulation as well as the experimental results are explained. With this 3D detection method, devices can be connected to a computer to have real time image updates and interaction of objects in an XYZ coordinate system. Keywords: 3D point, xyz-coordinates, lens, hologram
APA, Harvard, Vancouver, ISO, and other styles
7

Acharian, Georges. "Modélisation de la détection de défauts et perception de la qualité d'images radiologiques." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT065.

Full text
Abstract:
Depuis la fin du 20ème siècle, l'imagerie médicale s'est fortement développée et représente aujourd'hui un moyen incontournable pour le diagnostic médical. Dans le domaine de la radiologie par rayons X, de nouveaux détecteurs numériques remplacent progressivement les anciennes techniques à film et permettent d'obtenir des images de meilleure qualité. Cette thèse, préparée en collaboration entre l'entreprise Trixell, constructeur de détecteurs plats numériques pour la radiographie, et le laboratoire Gipsa-Lab, s'inscrit dans le cadre général du contrôle qualité de ces détecteurs par analyse d'images. Les applications biomédicales mettant en jeu ces appareils, sont généralement particulièrement sensibles, et le principe de « zéro défaut » est de mise quant à la qualité des produits. Malgré les différents traitements, certains défauts peuvent être présents dans les images. Cette thèse est axée sur le développement de modèles de mesure de la visibilité des défauts, en cohérence avec l'observation d'un humain. Deux approches complémentaires sont développées : la première approche basée sur des expériences psychophysiques et la seconde approche de modélisation basée sur la théorie de décision. Par rapport aux modèles de visibilité existants, notre modèle prend en compte la perception humaine et notamment les saccades et fixations oculaires dans l'analyse des images : le test de visibilité est ainsi le produit de tests de visibilité locaux, calculés aux points saillants de l'image supposés indépendants. Les résultats montrent l'intérêt de notre approche, notamment pour des détecteurs statiques. En se fondant sur les résultats et une dernière expériences d'oculométrie, cette thèse suggère en perspective la prise en compte d'autres caractéristiques comme le nombre de fixations oculaires, et leur durée
Since the beginning of the 20th century, medical imaging has significantly been improved and represents now an essential mean for medical diagnosis. In the field of radiology, new digital detectors are gradually replacing the old film techniques allowing a better image. This thesis, prepared in collaboration between the company Trixell, manufacturer of X-ray detectors, and the laboratory Gipsa-Lab, is part of the framework of quality control of these detectors by image analysis. Biomedical applications involved by these devices are particularly sensitive, and the principle of “zero artifact” is required to ensure the quality of the product. Despite the various processings, some artifacts may be present in the images.This thesis focuses on the development of models that quantify the visibility of artifacts in concordance to human observation. Two complementary approaches are developed : the first one is based on psychophysical experiments and the second one is a modeling approach based on decision theory. In comparison to existent models, our model takes into account perception characteristics including saccades and eye fixation in image analysis : the visibility test is thus the product of local visibility tests calculated on the salient points of the image and assumed to be independent. The results show the interest of our approach, especially for static detectors. Based on the results and a final eye-tracking experiment, this thesis suggests perspectives taking into account other characteristics such as the number of eye fixations and their duration
APA, Harvard, Vancouver, ISO, and other styles
8

Cohen-Adad, Julien. "Anatomo-functional magnetic resonance imaging of the spinal cord and its application to the characterization of spinal lesions in cats." Thèse, Châtenay-Malabry, Ecole centrale de Paris, 2008. http://hdl.handle.net/1866/3132.

Full text
Abstract:
Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique.
Spinal cord injury has a significant impact on quality of life since it can lead to motor (paralysis) and sensory deficits. These deficits evolve in time as reorganisation of the central nervous system occurs, involving physiological and neurochemical mechanisms that are still not fully understood. Given that both the severity of the deficit and the successful rehabilitation process depend on the anatomical pathways that have been altered in the spinal cord, it may be of great interest to assess white matter integrity after a spinal lesion and to evaluate quantitatively the functional state of spinal neurons. The great potential of magnetic resonance imaging (MRI) lies in its ability to investigate both anatomical and functional properties of the central nervous system non invasively. To address the problem of spinal cord injury, this project aimed to evaluate the benefits of diffusion-weighted MRI to assess the integrity of white matter axons that remain after spinal cord injury. The second objective was to evaluate to what extent functional MRI can measure the activity of neurons in the spinal cord. Although widely applied to the brain, diffusion-weighted MRI and functional MRI of the spinal cord are not straightforward. Various issues arise from the small cross-section width of the cord, the presence of cardiac and respiratory motions, and from magnetic field inhomogeneities in the spinal region. The main purpose of the present thesis was therefore to develop methodologies to circumvent these issues. This development notably focused on the optimization of acquisition parameters to image anatomical, diffusion-weighted and functional data in cats and humans at 3T using standard coils and pulse sequences. Moreover, various strategies to correct for susceptibility-induced distortions were investigated and the sensitivity and specificity in spinal cord functional MRI was studied. As a result, acquisition of high spatial and angular diffusion-weighted images and evaluation of the integrity of specific spinal pathways following spinal cord injury was achieved. Moreover, functional activations in the spinal cord of anaesthetized cats was detected. Although encouraging, these results highlight the need for further technical and methodological development in the near-future. Being able to develop a reliable neuroimaging tool for confirming clinical parameters would improve diagnostic and prognosis. It would also enable to monitor the effect of various therapeutic strategies. This would certainly bring hope to a large number of people suffering from trauma and neurodegenerative diseases such as spinal cord injury, tumours, multiple sclerosis and amyotrophic lateral sclerosis.
APA, Harvard, Vancouver, ISO, and other styles
9

ROTH, MURIEL. "Développements méthodologiques en imagerie d'activation cérébrale chez l'homme par résonance magnétique nucléaire : quantification de flux, imagerie de l'effet BOLD et correction des mouvements de la tête." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10016.

Full text
Abstract:
Ce travail est centre sur les developpements methodologiques en imagerie par resonance magnetique des fonctions du cerveau. Une nouvelle methode d'irm fonctionnelle quantitative basee sur la mesure du debit sanguin est tout d'abord decrite. Des images angiographiques ont permis de mesurer le debit dans une veine drainant le cortex moteur. Des variations significatives du debit sanguin entre des periodes de repos, de simulation mentale et d'execution d'un acte moteur ont ete mises en evidence. Ces informations fonctionnelles ne permettent pas de localiser precisement les regions corticales activees. Cette localisation a ete effectuee en appliquant un traitement approprie sur des images sensibles aux variations du taux d'oxygenation sanguine. Des cartes d'activation cerebrale de bonne resolution spatiale ( 3 mm) sont ainsi obtenues. Nous avons alors demontre que l'aire motrice primaire est activee lors de la simulation mentale d'un acte moteur. Les mouvements de la tete survenant pendant un examen fonctionnel induisent des erreurs sur les cartes d'activation. Un nouvel algorithme de correction des deplacements dans le plan des images est presente. Cet algorithme utilise les proprietes de la transformation de fourier concernant les rotations et les translations afin de determiner rapidement les parametres du deplacement. Des tests sur des images simulees ont permis de montrer la fiabilite et la precision de l'algorithme.
APA, Harvard, Vancouver, ISO, and other styles
10

MacLennan-Brown, Ken. "Quantification of artefacts inherent within digital imaging chains." Thesis, University of Westminster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Imaging artefact"

1

Images and Artefacts of the Ancient World. British Academy, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

K, Bowman Alan, Brady Michael 1945-, British Academy, and Royal Society (Great Britain), eds. Images and artefacts of the ancient world. Oxford: Oxford University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garbi, Madalina. The general principles of echocardiography. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0001.

Full text
Abstract:
Knowledge of basic ultrasound principles and current echocardiography technology features is essential for image interpretation and for optimal use of equipment during image acquisition and post-processing.Echocardiography uses ultrasound waves to generate images of cardiovascular structures and to display information regarding the blood flow through these structures.The present chapter starts by presenting the physics of ultrasound and the construction and function of instruments. Image formation, optimization, display, presentation, storage, and communication are explained. Advantages and disadvantages of available imaging modes (M-mode, 2D, 3D) are detailed and imaging artefacts are illustrated. The biological effects of ultrasound and the need for quality assurance are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Garbi, Madalina, Jan D’hooge, and Evgeny Shkolnik. General principles of echocardiography. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0001.

Full text
Abstract:
Echocardiography uses ultrasound waves to generate images of cardiovascular structures and to display information regarding the blood flow through these structures. Knowledge of basic ultrasound principles and current technology is essential for image interpretation and for optimal use of equipment during image acquisition and post-processing. This chapter starts by presenting the physics of ultrasound and the construction and function of instruments. Image formation, optimization, display, presentation, storage, and communication are explained. Advantages and disadvantages of available imaging modes (M-mode, two-dimensional, and three-dimensional) are detailed and imaging artefacts are illustrated. The potential biologic effects of ultrasound and the need for quality assurance are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Hughes, Jim. Introduction to Intra-Operative and Surgical Radiography. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198813170.001.0001.

Full text
Abstract:
This book is designed to be both a quick guide and a reference text for radiographers and other staff who perform imaging during surgical procedures. Over 40 of the most common procedures are covered in detail, from initial setup to sending final images, with sections on patient positioning, C-arm approach, anatomy, surgical hardware, and alternative techniques. These include cases related to orthopaedics, urology, paediatrics, neurology, and other branches of medicine. Each chapter covers both surgical and imaging techniques, to give the radiographer a better idea of what is required in terms of imaging and technique, along with comprehensive positioning graphics and accompanying high-quality radiograph images. The techniques and methods demonstrated are fully explained, and will allow staff to confidently perform imaging for procedures not covered in the text. Also included are sections on the practical skills required for working in theatres (such as team work and safe practice), infection control, radiation protection, exposures, and image quality, as well as discussions about the function, systems, and usage of intraoperative imaging equipment. This includes both image intensifier (II) systems and the newer flat-panel detector systems. Image artefacts and the effects of under- and overexposure are also covered, with examples of radiograph images and details on how to remedy them. Each chapter is separated by specialty and body region for quick reference and ease of navigation, while key points and imaging considerations are highlighted in each procedure for emphasis.
APA, Harvard, Vancouver, ISO, and other styles
6

Sidebotham, David, Alan Forbes Merry, Malcolm E. Legget, and I. Gavin Wright, eds. Practical Perioperative Transoesophageal Echocardiography. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198759089.001.0001.

Full text
Abstract:
Practical Perioperative Transoesophageal Echocardiography, 3rd edition, is a concise guide to the use of transoesophageal echocardiography (TOE) for patients undergoing cardiac surgical and interventional cardiological procedures. The text is aimed at anaesthetists and cardiologists, particularly those in training and those preparing for examinations. Three-dimensional imaging is integrated throughout the text. New to the third edition are chapters on mitral valve repair, aortic valve repair, TOE in the interventional catheter laboratory, and TOE assessment of pericardial disease. The first three chapters address the fundamentals of ultrasound imaging: physical principles, artefacts, image optimization, and quantitative echocardiography. Chapters 4 and 5 cover standard views, anatomical variants, and cardiac masses. Chapters 6 and 7 address left ventricular systolic and diastolic function, respectively. The subsequent eight chapters form the core of the book and deal with the cardiac valves and the thoracic aorta. Emphasis is placed on those aspects relevant to cardiac surgery; therefore, the mitral and aortic valves are afforded particular prominence. The role of three-dimensional imaging for the mitral valve is highlighted. Chapter 17 covers the emerging role of TOE for patients undergoing procedures in the catheter laboratory and covers topics such as transcatheter aortic valve replacement and edge-to-edge mitral valve repair. Chapter 18 provides an overview of the common congenital abnormalities encountered in adults. Two chapters address the important subjects of thoracic transplantation and mechanical cardiorespiratory support. Finally, Chapter 21 brings many threads from previous chapters together to describe the role of TOE in assessing haemodynamic instability.
APA, Harvard, Vancouver, ISO, and other styles
7

Benyounes, Nadia, Mauro Pepi, Roberta Esposito, Carmen Ginghina, and Ariel Cohen. Cardiac masses and potential sources of emboli. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0051.

Full text
Abstract:
Cardiac masses are abnormal structures within or immediately adjacent to the heart. They have to be distinguished from variants of normal cardiac structures, postoperative changes, and ultrasound artefacts. These abnormal masses may be localized in the left or right heart cavities, with different clinical manifestations according to their localization. Among the abnormal cardiac masses (thrombus, vegetations, tumours), tumours are not discussed in this chapter. Echocardiography is the main but not the only imaging technique for the evaluation of cardiac masses, and is largely available. Hence, it is indicated in patients with a systemic embolic event, searching for a cardiac source embolism. When transthoracic echocardiography is negative, transoesophageal echocardiography is indicated, in cryptogenic ischaemic events (no cause found). Right heart masses are mainly responsible for pulmonary embolisms, but may be the cause of a systemic embolus, via the atrial septum. Right heart thrombi rarely form in situ, and are hence more often venous thrombi entrapped in the right heart on their way to the pulmonary arteries. Echocardiography is mandatory in the setting of pulmonary embolism.
APA, Harvard, Vancouver, ISO, and other styles
8

Montangie, Lisandro, Vanesa María Sanz, and Luis Héctor Illanes. Imágenes en Medicina Nuclear. Editorial de la Universidad Nacional de La Plata (EDULP), 2019. http://dx.doi.org/10.35537/10915/80862.

Full text
Abstract:
Este libro habla de Medicina Nuclear (MN). Esta especialidad médica incluye tanto prácticas diagnósticas como procedimientos terapéuticos. En estas páginas se analiza solamente lo que concierne al cometido diagnóstico de la Medicina Nuclear que se logra a través de imágenes. La medicina actual es impensable sin la utilización de imágenes. Englobadas bajo el nombre de Diagnóstico por imágenes (DXI), su empleo trasciende la etapa de diagnóstico de las patologías y se emplean también con mucha eficacia para planificar terapias y evaluar resultados. Las imágenes que aporta la MN, se obtienen a partir de la administración al paciente de un radiofármaco y la detección de cómo se distribuye la radioactividad dentro del organismo; esa distribución es graficada en una imagen. Como toda práctica diagnóstica en medicina, las imágenes médicas tienen como objetivo la obtención de datos. El prestigio de que gozan las imágenes con respecto a otras formas de presentar la información, conlleva la falacia de que las mismas son información objetiva, reflejo cabal del interior del organismo, y no datos sujetos a interpretación. Esto ocasiona dificultades a la hora de evaluar las imágenes para decidir si son aptas para efectuar un diagnóstico. En el libro se establecen los criterios con que deben justipreciarse los estudios, que no tiene que ver con la apariencia de la imagen. A lo largo de los capítulos se sugiere entrenarse en aplicar formas comprobadas de valorar una imagen de Medicina Nuclear. Y esa evaluación debe hacerse examinando en profundidad las tres particularidades siguientes; la validez estadística de la adquisición; la eventual existencia de artefactos producto de la reconstrucción; la calidad de la imagen en relación al radiofármaco. ¿Invita el libro a dudar de las imágenes? De alguna manera sí. Pero no se trata de una incitación desconfiar de las imágenes médicas como procedimiento diagnóstico. No sostiene prejuicios ni suspicacias sobre métodos ya comprobados y validados. En lo que insiste es que no se debe aceptar la imagen como prueba de nada, hasta no estar seguros de que ha sido adquirida adecuadamente y poder descartar la presencia de artefactos; hasta no garantizar que la información que denota sea estadísticamente significativa; hasta no atestiguar con un control de calidad que el radiofármaco elegido y administrado se concentra en el territorio que se pretende indagar.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Imaging artefact"

1

Reid, Lee B., Ashley Gillman, Alex M. Pagnozzi, José V. Manjón, and Jurgen Fripp. "MRI Denoising and Artefact Removal Using Self-Organizing Maps for Fast Global Block-Matching." In Patch-Based Techniques in Medical Imaging, 20–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00500-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puttock, James, Behnaz Sohani, Banafsheh Khalesi, Gianluigi Tiberi, Sandra Dudley-McEvoy, and Mohammad Ghavami. "UWB Microwave Imaging for Inclusions Detection: Methodology for Comparing Artefact Removal Algorithms." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 46–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64991-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nahuis, Johan. "Artefacten." In Magnetic Resonance Imaging, 165–73. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leeman, Sidney, Eduardo T. Costa, and Andrew J. Healey. "Reconstruction Imaging Without Artefacts." In Acoustical Imaging, 23–27. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3370-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bernal, Jose, William Xu, Maria d. C. Valdés-Hernández, Javier Escudero, Angela C. C. Jochems, Una Clancy, Fergus N. Doubal, et al. "Selective Motion Artefact Reduction via Radiomics and k-space Reconstruction for Improving Perivascular Space Quantification in Brain Magnetic Resonance Imaging." In Medical Image Understanding and Analysis, 151–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80432-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Costa, E. T., and S. Leeman. "Diffraction Artefacts and their Removal." In Acoustical Imaging, 403–11. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0791-4_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feletti, Francesco, Bruna Malta, and Andrea Aliverti. "Artefacts in Thoracic Ultrasound." In Thoracic Ultrasound and Integrated Imaging, 13–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-93055-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bom, N., C. T. Lancée, N. de Jong, and C. M. Ligtvoet. "Diagnostic Ultrasound: History, Transducers, Artefacts and New Applications." In Acoustical Imaging, 397–403. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2523-9_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Redel, Dierk A. "Artefacts in Color Blood Flow Imaging." In Color Blood Flow Imaging of the Heart, 13–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-71172-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nathan, Malavika, Gopinath Gnanasegaran, Kathryn Adamson, and Ignac Fogelman. "Bone Scintigraphy: Patterns, Variants, Limitations and Artefacts." In Radionuclide and Hybrid Bone Imaging, 377–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02400-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Imaging artefact"

1

Figl, Michael, Romana Fragner, Patrick Heimel, Christian Loewe, and Wolfgang Birkfellner. "Streak artefact quantification for abdominal CT." In SPIE Medical Imaging, edited by David J. Manning and Craig K. Abbey. SPIE, 2011. http://dx.doi.org/10.1117/12.878577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramponi, Giovanni, and Leonardo Abate. "Robust measurement of the blocking artefact." In IS&T/SPIE Electronic Imaging, edited by Jaakko T. Astola, Karen O. Egiazarian, Nasser M. Nasrabadi, and Syed A. Rizvi. SPIE, 2009. http://dx.doi.org/10.1117/12.805726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radhakrishnan, Gayathri, C. S. Suchand Sandeep, Venkata Siva Gummaluri, C. Vijayan, and Murukeshan Vadakke Matham. "Plasmonic Random Laser for Artefact-free Imaging." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/noma.2020.noth1e.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rukundo, Olivier, and Samuel Emil Schmidt. "Aliasing artefact index for image interpolation quality assessment." In Optoelectronic Imaging and Multimedia Technology V, edited by Qionghai Dai and Tsutomu Shimura. SPIE, 2018. http://dx.doi.org/10.1117/12.2503872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muller, Jens, Jan Muller, Bill Thaute, and Ronald Tetzlaff. "Real-time artefact filter for intraoperative thermographic imaging." In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016. http://dx.doi.org/10.1109/biocas.2016.7833737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, L., E. Slob, K. Wapenaar, and J. van der Neut. "Artefact-Free Imaging by a Revised Marchenko Scheme." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCarthy, Michael B., Stephen B. Brown, Anthony Evenden, and Andy D. Robinson. "NPL freeform artefact for verification of non-contact measuring systems." In IS&T/SPIE Electronic Imaging, edited by J. Angelo Beraldin, Geraldine S. Cheok, Michael B. McCarthy, Ulrich Neuschaefer-Rube, Atilla M. Baskurt, Ian E. McDowall, and Margaret Dolinsky. SPIE, 2011. http://dx.doi.org/10.1117/12.876705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hauke, C., M. Leghissa, T. Mertelmeier, M. Radicke, S. Sutter, T. Weber, G. Anton, and L. Ritschl. "Moiré artefact reduction in Talbot-Lau X-ray imaging." In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ruthotto, Lars, Siawoosh Mohammadi, and Nikolaus Weiskopf. "A new method for joint susceptibility artefact correction and super-resolution for dMRI." In SPIE Medical Imaging, edited by Sebastien Ourselin and Martin A. Styner. SPIE, 2014. http://dx.doi.org/10.1117/12.2043591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Daga, Pankaj, Marc Modat, Gavin Winston, Mark White, Laura Mancini, Andrew W. McEvoy, John Thornton, Tarek Yousry, John S. Duncan, and Sebastien Ourselin. "Susceptibility artefact correction by combining B0 field maps and non-rigid registration using graph cuts." In SPIE Medical Imaging, edited by Sebastien Ourselin and David R. Haynor. SPIE, 2013. http://dx.doi.org/10.1117/12.2006800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography