Academic literature on the topic 'Imaging artefact'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Imaging artefact.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Imaging artefact"
GANAPATHI, M., G. JOSEPH, R. SAVAGE, A. R. JONES, B. TIMMS, and K. LYONS. "MRI Susceptibility Artefacts Related to Scaphoid Screws: the Effect of Screw Type, Screw Orientation and Imaging Parameters." Journal of Hand Surgery 27, no. 2 (April 2002): 165–70. http://dx.doi.org/10.1054/jhsb.2001.0717.
Full textTran, Lan Thi Xuan, Junichiro Sakamoto, Ami Kuribayashi, Hiroshi Watanabe, Hiroshi Tomisato, and Tohru Kurabayashi. "Quantitative evaluation of artefact reduction from metallic dental materials in short tau inversion recovery imaging: efficacy of syngo WARP at 3.0 tesla." Dentomaxillofacial Radiology 48, no. 7 (October 2019): 20190036. http://dx.doi.org/10.1259/dmfr.20190036.
Full textIllanes, Alfredo, Johannes W. Krug, and Michael Friebe. "Assessing MRI susceptibility artefact through an indicator of image distortion." Current Directions in Biomedical Engineering 2, no. 1 (September 1, 2016): 427–31. http://dx.doi.org/10.1515/cdbme-2016-0095.
Full textErasmus, L. J., D. Hurter, M. Naude, H. G. Kritzinger, and S. Acho. "A short overview of MRI artefacts." South African Journal of Radiology 8, no. 2 (June 9, 2004): 13. http://dx.doi.org/10.4102/sajr.v8i2.127.
Full textDU CRET, RENÉ P., ROBERT J. BOUDREAU, FRANK P. MAGUIRE, and SANDRA J. ALTHAUS. "Sigmoid Augmentation Artefact in Skeletal Imaging." Clinical Nuclear Medicine 13, no. 5 (May 1988): 375. http://dx.doi.org/10.1097/00003072-198805000-00021.
Full textMartins, Luciano Augusto Cano, Polyane Mazucatto Queiroz, Yuri Nejaim, Karla de Faria Vasconcelos, Francisco Carlos Groppo, and Francisco Haiter-Neto. "Evaluation of metal artefacts for two CBCT devices with a new dental arch phantom." Dentomaxillofacial Radiology 49, no. 5 (July 2020): 20190385. http://dx.doi.org/10.1259/dmfr.20190385.
Full textYue Lee, Francis Chun, Christian Jenssen, and Christoph F. Dietrich. "A common misunderstanding in lung ultrasound: the comet tail artefact." Medical Ultrasonography 20, no. 3 (August 30, 2018): 379. http://dx.doi.org/10.11152/mu-1573.
Full textMahon, Ciara, Peter Gatehouse, John Baksi, and Raad H. Mohiaddin. "The mysterious needle in the heart: a case report." European Heart Journal - Case Reports 4, no. 3 (May 3, 2020): 1–4. http://dx.doi.org/10.1093/ehjcr/ytaa083.
Full textPitman, A. G., V. Kalff, B. Van Every, B. Risa, L. R. Barnden, and M. J. Kelly. "19. Is respiratory motion artefact independent of attenuation artefact?" Nuclear Medicine Communications 22, no. 8 (August 2001): 924. http://dx.doi.org/10.1097/00006231-200108000-00029.
Full textBuchanan, Allison, Carla Morales, Stephen Looney, and Sajitha Kalathingal. "Fish scale artefact on an intraoral imaging receptor." Dentomaxillofacial Radiology 46, no. 8 (December 2017): 20170224. http://dx.doi.org/10.1259/dmfr.20170224.
Full textDissertations / Theses on the topic "Imaging artefact"
Yildiz, Yesna. "Nonlinear propagation artefact correction in contrast enhanced ultrasound imaging." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/52435.
Full textMeißner, Mirko [Verfasser], and Jürgen [Akademischer Betreuer] Hennig. "Chemical Shift Artefact Correction in 19F Magnetic Resonance Imaging = Korrektur des Artefakts der Chemischen Verschiebung in der 19F Magnetresonanzbildgebung." Freiburg : Universität, 2014. http://d-nb.info/1123478813/34.
Full textDel, Castello Mariangela. "Analysis of electroencephalography signals collected in a magnetic resonance environment: characterisation of the ballistocardiographic artefact." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13214/.
Full textMarcoň, Petr. "Analýza vybraných artefaktů v difuzních magneticko-rezonančních měřeních." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-233601.
Full textKraft, Sandra. "Routine Development for Artefact Correction and Information Extraction from Diffusion Weighted Echo Planar Images of Rats." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190993.
Full textBiologer och läkare studerar komplexa biologiska processer för vilket de använder avancerade bildgivande metoder. De samlar bilder som innehåller mycket information vilken måste extraheras på ett korrekt sätt. Detta kräver god datorvana och kunskaper inom bildprocessning, vilket de sällan har. För att komma runt problemet, syftade den här masteruppsattsen till att utveckla en rutin för artefaktkorrigering och informationsextrahering från bilder tagna i ett forskningsprojekt vid Karolinska Institutet i Stockholm. Genom att utveckla rutinen, visar uppsattsen hur mjukvaror utvecklade för bilder av människa kan appliceras på bilder av råtta. Rutinen hanterar formatteringsproblem och artefaktkorrigering, beräknar diffusionsmått, och utför statistiska tester på spatiellt matchade magnetresonansavbildningar tagna med diffusionsviktade ekoplana metoder. Rutinen verifierades genom att analysera bilder som den processat och det konstaterades att den skapar korrekta bilder. Framtida studier inom området bör fokusera på att utveckla atlaser av råttor och fortsätta identifieringen av hur mjukvaror utvecklade för bilder av människa kan appliceras på bilder av råtta.
Nell, Raymond D. "Three dimensional depth visualization using image sensing to detect artefact in space." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1199.
Full textThree-dimensional (3D) artefact detection can provide the conception of vision and real time interaction of electronic products with devices. The orientation and interaction of electrical systems with objects can be obtained. The introduction of electronic vision detection can be used in multiple applications, from industry, in robotics and also to give orientation to humans to their immediate surroundings. An article covering holograms states that these images can provide information about an object that can be examined from different angles. The limitations of a hologram are that there must be absolute immobilization of the object and the image system. Humans are capable of stereoscopic vision where two images are fused together to provide a 3D view of an object. In this research, two digital images are used to determine the artefact position in space. The application of a camera is utilized and the 3D coordinates of the artefact are determined. To obtain the 3D position, the principles of the pinhole camera, a single lens as well as two image visualizations are applied. This study explains the method used to determine the artefact position in space. To obtain the 3D position of an artefact with a single image was derived. The mathematical formulae are derived to determine the 3D position of an artefact in space and these formulae are applied in the pinhole camera setup to determine the 3D position. The application is also applied in the X-ray spectrum, where the length of structures can be obtained using the mathematical principles derived. The XYZ coordinates are determined, a computer simulation as well as the experimental results are explained. With this 3D detection method, devices can be connected to a computer to have real time image updates and interaction of objects in an XYZ coordinate system. Keywords: 3D point, xyz-coordinates, lens, hologram
Acharian, Georges. "Modélisation de la détection de défauts et perception de la qualité d'images radiologiques." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT065.
Full textSince the beginning of the 20th century, medical imaging has significantly been improved and represents now an essential mean for medical diagnosis. In the field of radiology, new digital detectors are gradually replacing the old film techniques allowing a better image. This thesis, prepared in collaboration between the company Trixell, manufacturer of X-ray detectors, and the laboratory Gipsa-Lab, is part of the framework of quality control of these detectors by image analysis. Biomedical applications involved by these devices are particularly sensitive, and the principle of “zero artifact” is required to ensure the quality of the product. Despite the various processings, some artifacts may be present in the images.This thesis focuses on the development of models that quantify the visibility of artifacts in concordance to human observation. Two complementary approaches are developed : the first one is based on psychophysical experiments and the second one is a modeling approach based on decision theory. In comparison to existent models, our model takes into account perception characteristics including saccades and eye fixation in image analysis : the visibility test is thus the product of local visibility tests calculated on the salient points of the image and assumed to be independent. The results show the interest of our approach, especially for static detectors. Based on the results and a final eye-tracking experiment, this thesis suggests perspectives taking into account other characteristics such as the number of eye fixations and their duration
Cohen-Adad, Julien. "Anatomo-functional magnetic resonance imaging of the spinal cord and its application to the characterization of spinal lesions in cats." Thèse, Châtenay-Malabry, Ecole centrale de Paris, 2008. http://hdl.handle.net/1866/3132.
Full textSpinal cord injury has a significant impact on quality of life since it can lead to motor (paralysis) and sensory deficits. These deficits evolve in time as reorganisation of the central nervous system occurs, involving physiological and neurochemical mechanisms that are still not fully understood. Given that both the severity of the deficit and the successful rehabilitation process depend on the anatomical pathways that have been altered in the spinal cord, it may be of great interest to assess white matter integrity after a spinal lesion and to evaluate quantitatively the functional state of spinal neurons. The great potential of magnetic resonance imaging (MRI) lies in its ability to investigate both anatomical and functional properties of the central nervous system non invasively. To address the problem of spinal cord injury, this project aimed to evaluate the benefits of diffusion-weighted MRI to assess the integrity of white matter axons that remain after spinal cord injury. The second objective was to evaluate to what extent functional MRI can measure the activity of neurons in the spinal cord. Although widely applied to the brain, diffusion-weighted MRI and functional MRI of the spinal cord are not straightforward. Various issues arise from the small cross-section width of the cord, the presence of cardiac and respiratory motions, and from magnetic field inhomogeneities in the spinal region. The main purpose of the present thesis was therefore to develop methodologies to circumvent these issues. This development notably focused on the optimization of acquisition parameters to image anatomical, diffusion-weighted and functional data in cats and humans at 3T using standard coils and pulse sequences. Moreover, various strategies to correct for susceptibility-induced distortions were investigated and the sensitivity and specificity in spinal cord functional MRI was studied. As a result, acquisition of high spatial and angular diffusion-weighted images and evaluation of the integrity of specific spinal pathways following spinal cord injury was achieved. Moreover, functional activations in the spinal cord of anaesthetized cats was detected. Although encouraging, these results highlight the need for further technical and methodological development in the near-future. Being able to develop a reliable neuroimaging tool for confirming clinical parameters would improve diagnostic and prognosis. It would also enable to monitor the effect of various therapeutic strategies. This would certainly bring hope to a large number of people suffering from trauma and neurodegenerative diseases such as spinal cord injury, tumours, multiple sclerosis and amyotrophic lateral sclerosis.
ROTH, MURIEL. "Développements méthodologiques en imagerie d'activation cérébrale chez l'homme par résonance magnétique nucléaire : quantification de flux, imagerie de l'effet BOLD et correction des mouvements de la tête." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10016.
Full textMacLennan-Brown, Ken. "Quantification of artefacts inherent within digital imaging chains." Thesis, University of Westminster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251717.
Full textBooks on the topic "Imaging artefact"
K, Bowman Alan, Brady Michael 1945-, British Academy, and Royal Society (Great Britain), eds. Images and artefacts of the ancient world. Oxford: Oxford University Press, 2005.
Find full textGarbi, Madalina. The general principles of echocardiography. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0001.
Full textGarbi, Madalina, Jan D’hooge, and Evgeny Shkolnik. General principles of echocardiography. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0001.
Full textHughes, Jim. Introduction to Intra-Operative and Surgical Radiography. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198813170.001.0001.
Full textSidebotham, David, Alan Forbes Merry, Malcolm E. Legget, and I. Gavin Wright, eds. Practical Perioperative Transoesophageal Echocardiography. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198759089.001.0001.
Full textBenyounes, Nadia, Mauro Pepi, Roberta Esposito, Carmen Ginghina, and Ariel Cohen. Cardiac masses and potential sources of emboli. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0051.
Full textMontangie, Lisandro, Vanesa María Sanz, and Luis Héctor Illanes. Imágenes en Medicina Nuclear. Editorial de la Universidad Nacional de La Plata (EDULP), 2019. http://dx.doi.org/10.35537/10915/80862.
Full textBook chapters on the topic "Imaging artefact"
Reid, Lee B., Ashley Gillman, Alex M. Pagnozzi, José V. Manjón, and Jurgen Fripp. "MRI Denoising and Artefact Removal Using Self-Organizing Maps for Fast Global Block-Matching." In Patch-Based Techniques in Medical Imaging, 20–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00500-9_3.
Full textPuttock, James, Behnaz Sohani, Banafsheh Khalesi, Gianluigi Tiberi, Sandra Dudley-McEvoy, and Mohammad Ghavami. "UWB Microwave Imaging for Inclusions Detection: Methodology for Comparing Artefact Removal Algorithms." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 46–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64991-3_4.
Full textNahuis, Johan. "Artefacten." In Magnetic Resonance Imaging, 165–73. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3_11.
Full textLeeman, Sidney, Eduardo T. Costa, and Andrew J. Healey. "Reconstruction Imaging Without Artefacts." In Acoustical Imaging, 23–27. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3370-2_4.
Full textBernal, Jose, William Xu, Maria d. C. Valdés-Hernández, Javier Escudero, Angela C. C. Jochems, Una Clancy, Fergus N. Doubal, et al. "Selective Motion Artefact Reduction via Radiomics and k-space Reconstruction for Improving Perivascular Space Quantification in Brain Magnetic Resonance Imaging." In Medical Image Understanding and Analysis, 151–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80432-9_12.
Full textCosta, E. T., and S. Leeman. "Diffraction Artefacts and their Removal." In Acoustical Imaging, 403–11. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0791-4_42.
Full textFeletti, Francesco, Bruna Malta, and Andrea Aliverti. "Artefacts in Thoracic Ultrasound." In Thoracic Ultrasound and Integrated Imaging, 13–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-93055-8_2.
Full textBom, N., C. T. Lancée, N. de Jong, and C. M. Ligtvoet. "Diagnostic Ultrasound: History, Transducers, Artefacts and New Applications." In Acoustical Imaging, 397–403. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2523-9_36.
Full textRedel, Dierk A. "Artefacts in Color Blood Flow Imaging." In Color Blood Flow Imaging of the Heart, 13–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-71172-5_4.
Full textNathan, Malavika, Gopinath Gnanasegaran, Kathryn Adamson, and Ignac Fogelman. "Bone Scintigraphy: Patterns, Variants, Limitations and Artefacts." In Radionuclide and Hybrid Bone Imaging, 377–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02400-9_15.
Full textConference papers on the topic "Imaging artefact"
Figl, Michael, Romana Fragner, Patrick Heimel, Christian Loewe, and Wolfgang Birkfellner. "Streak artefact quantification for abdominal CT." In SPIE Medical Imaging, edited by David J. Manning and Craig K. Abbey. SPIE, 2011. http://dx.doi.org/10.1117/12.878577.
Full textRamponi, Giovanni, and Leonardo Abate. "Robust measurement of the blocking artefact." In IS&T/SPIE Electronic Imaging, edited by Jaakko T. Astola, Karen O. Egiazarian, Nasser M. Nasrabadi, and Syed A. Rizvi. SPIE, 2009. http://dx.doi.org/10.1117/12.805726.
Full textRadhakrishnan, Gayathri, C. S. Suchand Sandeep, Venkata Siva Gummaluri, C. Vijayan, and Murukeshan Vadakke Matham. "Plasmonic Random Laser for Artefact-free Imaging." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/noma.2020.noth1e.2.
Full textRukundo, Olivier, and Samuel Emil Schmidt. "Aliasing artefact index for image interpolation quality assessment." In Optoelectronic Imaging and Multimedia Technology V, edited by Qionghai Dai and Tsutomu Shimura. SPIE, 2018. http://dx.doi.org/10.1117/12.2503872.
Full textMuller, Jens, Jan Muller, Bill Thaute, and Ronald Tetzlaff. "Real-time artefact filter for intraoperative thermographic imaging." In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016. http://dx.doi.org/10.1109/biocas.2016.7833737.
Full textZhang, L., E. Slob, K. Wapenaar, and J. van der Neut. "Artefact-Free Imaging by a Revised Marchenko Scheme." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801658.
Full textMcCarthy, Michael B., Stephen B. Brown, Anthony Evenden, and Andy D. Robinson. "NPL freeform artefact for verification of non-contact measuring systems." In IS&T/SPIE Electronic Imaging, edited by J. Angelo Beraldin, Geraldine S. Cheok, Michael B. McCarthy, Ulrich Neuschaefer-Rube, Atilla M. Baskurt, Ian E. McDowall, and Margaret Dolinsky. SPIE, 2011. http://dx.doi.org/10.1117/12.876705.
Full textHauke, C., M. Leghissa, T. Mertelmeier, M. Radicke, S. Sutter, T. Weber, G. Anton, and L. Ritschl. "Moiré artefact reduction in Talbot-Lau X-ray imaging." In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363522.
Full textRuthotto, Lars, Siawoosh Mohammadi, and Nikolaus Weiskopf. "A new method for joint susceptibility artefact correction and super-resolution for dMRI." In SPIE Medical Imaging, edited by Sebastien Ourselin and Martin A. Styner. SPIE, 2014. http://dx.doi.org/10.1117/12.2043591.
Full textDaga, Pankaj, Marc Modat, Gavin Winston, Mark White, Laura Mancini, Andrew W. McEvoy, John Thornton, Tarek Yousry, John S. Duncan, and Sebastien Ourselin. "Susceptibility artefact correction by combining B0 field maps and non-rigid registration using graph cuts." In SPIE Medical Imaging, edited by Sebastien Ourselin and David R. Haynor. SPIE, 2013. http://dx.doi.org/10.1117/12.2006800.
Full text