Journal articles on the topic 'IMMUNOESCAPE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 journal articles for your research on the topic 'IMMUNOESCAPE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Concha-Benavente, Fernando, Raghvendra M. Srivastava, Soldano Ferrone, and Robert L. Ferris. "EGFR-mediated tumor immunoescape." OncoImmunology 2, no. 12 (2013): e27215. http://dx.doi.org/10.4161/onci.27215.
Full textQUESNEL, BRUNO. "Tumor dormancy and immunoescape." APMIS 116, no. 7-8 (2008): 685–94. http://dx.doi.org/10.1111/j.1600-0463.2008.01163.x.
Full textMazzolini, Guillermo. "Immunotherapy and immunoescape in colorectal cancer." World Journal of Gastroenterology 13, no. 44 (2007): 5822. http://dx.doi.org/10.3748/wjg.v13.i44.5822.
Full textVan hede, Dorien, Inge Langers, Philippe Delvenne, and Nathalie Jacobs. "Origin and immunoescape of uterine cervical cancer." La Presse Médicale 43, no. 12 (2014): e413-e421. http://dx.doi.org/10.1016/j.lpm.2014.09.005.
Full textSauleda, Jaume, Francisco Javier Verdú, Sergio Scrimini, Ernest Sala, and Jaume Pons. "Immunoescape the link between emphysema and lung cancer?" Journal of Thoracic Disease 11, S3 (2019): S329—S330. http://dx.doi.org/10.21037/jtd.2018.12.133.
Full textTakasu, Chie, Shoko Yamashita, Yuji Morine, et al. "The role of the immunoescape in colorectal cancer liver metastasis." PLOS ONE 16, no. 11 (2021): e0259940. http://dx.doi.org/10.1371/journal.pone.0259940.
Full textdeCampos-Lima, Pedro-Otavio, Jelena Levitskaya, Teresa Frisan, and Maria G. Masucci. "Strategies of immunoescape in Epstein-Barr virus persistence and pathogenesis." Seminars in Virology 7, no. 1 (1996): 75–82. http://dx.doi.org/10.1006/smvy.1996.0009.
Full textYaguchi, Tomonori, Hidetoshi Sumimoto, Chie Kudo-Saito, et al. "The mechanisms of cancer immunoescape and development of overcoming strategies." International Journal of Hematology 93, no. 3 (2011): 294–300. http://dx.doi.org/10.1007/s12185-011-0799-6.
Full textGhiringhelli, François, Mélanie Bruchard, Fanny Chalmin, and Cédric Rébé. "Production of Adenosine by Ectonucleotidases: A Key Factor in Tumor Immunoescape." Journal of Biomedicine and Biotechnology 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/473712.
Full textWu, Lei, Yanquan Xu, Huakan Zhao та ін. "FcγRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape". Theranostics 12, № 2 (2022): 842–58. http://dx.doi.org/10.7150/thno.66575.
Full textOgino, Takeshi, Shigetaka Moriai, Yoshiya Ishida, et al. "Association of immunoescape mechanisms with Epstein-Barr virus infection in nasopharyngeal carcinoma." International Journal of Cancer 120, no. 11 (2007): 2401–10. http://dx.doi.org/10.1002/ijc.22334.
Full textFerris, Robert L., Elizabeth M. Jaffee, and Soldano Ferrone. "Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape." Journal of Clinical Oncology 28, no. 28 (2010): 4390–99. http://dx.doi.org/10.1200/jco.2009.27.6360.
Full textTirapu, Iñigo, Eduardo Huarte, Cristiana Guiducci, et al. "Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma." Cancer Research 66, no. 4 (2006): 2442–50. http://dx.doi.org/10.1158/0008-5472.can-05-1681.
Full textRomano, Veronica, Immacolata Belviso, Alessandro Venuta, et al. "Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape." International Journal of Molecular Sciences 22, no. 10 (2021): 5283. http://dx.doi.org/10.3390/ijms22105283.
Full textGabriele, Caterina, Licia E. Prestagiacomo, Giovanni Cuda, and Marco Gaspari. "Mass Spectrometry-Based Glycoproteomics and Prostate Cancer." International Journal of Molecular Sciences 22, no. 10 (2021): 5222. http://dx.doi.org/10.3390/ijms22105222.
Full textIwami, Shingo, Hiroshi Haeno, and Franziska Michor. "A Race between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (epi)genetic Instability." PLoS Computational Biology 8, no. 2 (2012): e1002370. http://dx.doi.org/10.1371/journal.pcbi.1002370.
Full textRidolfi, Ruggero, Massimo Guidoboni, and Laura Ridolfi. "Cancer immunoediting and dioxin-activating aryl hydrocarbon receptor: a missing link in the shift toward tumor immunoescape?" Journal of Nucleic Acids Investigation 1, no. 1 (2010): 6. http://dx.doi.org/10.4081/jnai.2010.1724.
Full textGevorkian, Jonathan, Hein W. Verspaget, Daniel W. Hommes, Lin Chang, Charalabos Pothoulakis, and Stavroula Baritaki. "Mo1872 Corticotropin-Releasing Hormone Receptor 2 (CRHR2) Inhibits Colorectal Cancer Immunoescape Through Regulation of Fas/FasL Signaling." Gastroenterology 148, no. 4 (2015): S—732. http://dx.doi.org/10.1016/s0016-5085(15)32501-4.
Full textCheng, An Ning, Li-Chun Cheng, Cheng-Liang Kuo, et al. "Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1–mediated immunoescape via STING-IFN signaling and extracellular vesicles." Journal for ImmunoTherapy of Cancer 8, no. 2 (2020): e001372. http://dx.doi.org/10.1136/jitc-2020-001372.
Full textChimal-Ramírez, G. K., N. A. Espinoza-Sánchez, and E. M. Fuentes-Pananá. "Protumor Activities of the Immune Response: Insights in the Mechanisms of Immunological Shift, Oncotraining, and Oncopromotion." Journal of Oncology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/835956.
Full textLiapis, Ioannis, and Stavroula Baritaki. "COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment." Cancers 14, no. 17 (2022): 4330. http://dx.doi.org/10.3390/cancers14174330.
Full textTorretta, Enrica, Micaela Garziano, Mariacristina Poliseno, et al. "Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature." International Journal of Molecular Sciences 22, no. 19 (2021): 10198. http://dx.doi.org/10.3390/ijms221910198.
Full textYoulin, Kuang, He Weiyang, Liang Simin та Gou Xin. "Prostaglandin E2 Inhibits Prostate Cancer Progression by Countervailing Tumor Microenvironment-Induced Impairment of Dendritic Cell Migration through LXRα/CCR7 Pathway". Journal of Immunology Research 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5808962.
Full textKovar, Marek, Jakub Tomala, Helena Chmelova, et al. "Overcoming Immunoescape Mechanisms of BCL1 Leukemia and Induction of CD8+ T-Cell–Mediated BCL1-Specific Resistance in Mice Cured by Targeted Polymer-Bound Doxorubicin." Cancer Research 68, no. 23 (2008): 9875–83. http://dx.doi.org/10.1158/0008-5472.can-08-1979.
Full textPorcellato, Ilaria, Chiara Brachelente, Livia De Paolis, et al. "FoxP3 and IDO in Canine Melanocytic Tumors." Veterinary Pathology 56, no. 2 (2018): 189–99. http://dx.doi.org/10.1177/0300985818808530.
Full textFedders, Henning, Ameera Alsadeq, Britt-Sabina Petersen, et al. "Analyses of a Pair of Concordant Twins with Infant ALL and Discordant Clinical Outcome Reveals Immunoescape As a Mechanism of Disease Persistence in MLL-Rearranged Leukemia." Blood 124, no. 21 (2014): 3791. http://dx.doi.org/10.1182/blood.v124.21.3791.3791.
Full textGorain, Bapi, Hira Choudhury, Gan Sook Yee, and Subrat Kumar Bhattamisra. "Adenosine Receptors as Novel Targets for the Treatment of Various Cancers." Current Pharmaceutical Design 25, no. 26 (2019): 2828–41. http://dx.doi.org/10.2174/1381612825666190716102037.
Full textTsoukalas, Nikolaos, Ioannis Kostakis, Spiros Siakavellas, et al. "The value of RCAS1 as a potential biomarker in non-small cell lung cancers." Journal of Clinical Oncology 30, no. 15_suppl (2012): e21098-e21098. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.e21098.
Full textOrtego, Ignacio, Angel María Vizcay, Susana De La Cruz, et al. "Impact of dendritic cell vaccines added to neoadjuvant CT on pathological complete responses in early breast cancer patients according to PD-L1 expression." Journal of Clinical Oncology 39, no. 15_suppl (2021): 585. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.585.
Full textGuéry, Thomas, Christophe Roumier, Céline Berthon, et al. "The B7-H3 Protein In Acute Myeloid Leukemia." Blood 122, no. 21 (2013): 2620. http://dx.doi.org/10.1182/blood.v122.21.2620.2620.
Full textRamsay, Alan G., Andrew J. Clear, Alexander Davenport, Rewas Fatah, and John G. Gribben. "Chronic Lymphocytic Leukemia Cells Co-Opt CD200, CD270, CD274 and CD276 to Induce Impaired Actin Polarization At the T Cell Immune Synapse." Blood 118, no. 21 (2011): 802. http://dx.doi.org/10.1182/blood.v118.21.802.802.
Full textHuang, Bo, and Xuetao Cao. "Metabolically targeting immunosuppression and immunoescape for future cancer immunotherapy: a narrative review." Holistic Integrative Oncology 1, no. 1 (2022). http://dx.doi.org/10.1007/s44178-022-00018-5.
Full textKresno, Siti Boedina. "Cancer Immunology: From Immunosurveillance to Immunoescape." Indonesian Journal of Cancer 2, no. 1 (2008). http://dx.doi.org/10.33371/ijoc.v2i1.33.
Full textConcha-Benavente, Fernando, and Robert L. Ferris. "Reversing EGFR Mediated Immunoescape by Targeted Monoclonal Antibody Therapy." Frontiers in Pharmacology 8 (May 30, 2017). http://dx.doi.org/10.3389/fphar.2017.00332.
Full textWang, Yunfei, Kaikai Yi, Xing Liu та ін. "HOTAIR Up-Regulation Activates NF-κB to Induce Immunoescape in Gliomas". Frontiers in Immunology 12 (23 листопада 2021). http://dx.doi.org/10.3389/fimmu.2021.785463.
Full textPorcellato, Ilaria, Chiara Brachelente, Katia Cappelli, et al. "FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors." Veterinary Pathology, October 6, 2020, 030098582096013. http://dx.doi.org/10.1177/0300985820960131.
Full textKuo, Cheng-Liang, Ananth Ponneri Babuharisankar, Ying-Chen Lin, et al. "Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend?" Journal of Biomedical Science 29, no. 1 (2022). http://dx.doi.org/10.1186/s12929-022-00859-2.
Full textLei, Xinyuan, Hsinyu Lin, Jieqi Wang, et al. "Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-31417-x.
Full textPan, Jinghua, Yiting Qiao, Congcong Chen, et al. "USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1." Cell Death & Disease 12, no. 11 (2021). http://dx.doi.org/10.1038/s41419-021-04356-6.
Full textBraumüller, Heidi, Bernhard Mauerer, Christopher Berlin, et al. "Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment." Frontiers in Immunology 13 (June 30, 2022). http://dx.doi.org/10.3389/fimmu.2022.908449.
Full textBogéa, Gabriela Muller Reche, Amandda Évelin Silva-Carvalho, Luma Dayane de Carvalho Filiú-Braga, Francisco de Assis Rocha Neves, and Felipe Saldanha-Araujo. "The Inflammatory Status of Soluble Microenvironment Influences the Capacity of Melanoma Cells to Control T-Cell Responses." Frontiers in Oncology 12 (March 28, 2022). http://dx.doi.org/10.3389/fonc.2022.858425.
Full textAlsadeq, A., H. Fedders, BS Petersen, et al. "A Case of Concordant Twins with Infant ALL and Discordant Clinical Outcome – Part II: highlights on an immunoescape phenotype as a potential mechanism of disease persistence." Klinische Pädiatrie 227, no. 03 (2015). http://dx.doi.org/10.1055/s-0035-1550250.
Full textMoyano, Ana, Oscar Blanch-Lombarte, Laura Tarancon-Diez, et al. "Immunoescape of HIV-1 in Env-EL9 CD8 + T cell response restricted by HLA-B*14:02 in a Non progressor who lost twenty-seven years of HIV-1 control." Retrovirology 19, no. 1 (2022). http://dx.doi.org/10.1186/s12977-022-00591-7.
Full text