Academic literature on the topic 'IMMUNOPHARMACOLOGICAL'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IMMUNOPHARMACOLOGICAL.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "IMMUNOPHARMACOLOGICAL"

1

Ielpo, M. T. L., A. Basile, R. Miranda, et al. "Immunopharmacological properties of flavonoids." Fitoterapia 71 (August 2000): S101—S109. http://dx.doi.org/10.1016/s0367-326x(00)00184-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kovalenko, L. P., E. V. Shipaeva, S. V. Alekseeva, et al. "Immunopharmacological properties of noopept." Bulletin of Experimental Biology and Medicine 144, no. 1 (2007): 49–52. http://dx.doi.org/10.1007/s10517-007-0251-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jianmei, Stephanie Triseptya Hunto, Yoonyong Yang, Jongsung Lee, and Jae Youl Cho. "Tabebuia impetiginosa: A Comprehensive Review on Traditional Uses, Phytochemistry, and Immunopharmacological Properties." Molecules 25, no. 18 (2020): 4294. http://dx.doi.org/10.3390/molecules25184294.

Full text
Abstract:
Tabebuia impetiginosa, a plant native to the Amazon rainforest and other parts of Latin America, is traditionally used for treating fever, malaria, bacterial and fungal infections, and skin diseases. Additionally, several categories of phytochemicals and extracts isolated from T. impetiginosa have been studied via various models and displayed pharmacological activities. This review aims to uncover and summarize the research concerning T. impetiginosa, particularly its traditional uses, phytochemistry, and immunopharmacological activity, as well as to provide guidance for future research. A comprehensive search of the published literature was conducted to locate original publications pertaining to T. impetiginosa up to June 2020. The main inquiry used the following keywords in various combinations in titles and abstracts: T. impetiginosa, Taheebo, traditional uses, phytochemistry, immunopharmacological, anti-inflammatory activity. Immunopharmacological activity described in this paper includes its anti-inflammatory, anti-allergic, anti-autoimmune, and anti-cancer properties. Particularly, T. impetiginosa has a strong effect on anti-inflammatory activity. This paper also describes the target pathway underlying how T. impetiginosa inhibits the inflammatory response. The need for further investigation to identify other pharmacological activities as well as the exact target proteins of T. impetiginosa was also highlighted. T. impetiginosa may provide a new strategy for prevention and treatment of many immunological disorders that foster extensive research to identify potential anti-inflammatory and immunomodulatory compounds and fractions as well as to explore the underlying mechanisms of this herb. Further scientific evidence is required for clinical trials on its immunopharmacological effects and safety.
APA, Harvard, Vancouver, ISO, and other styles
4

Kawakita, Takuya. "Immunopharmacological effects of Kampo medicines." Folia Pharmacologica Japonica 132, no. 5 (2008): 276–79. http://dx.doi.org/10.1254/fpj.132.276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borriello, Francesco, Francescopaolo Granata, Gilda Varricchi, Arturo Genovese, Massimo Triggiani, and Gianni Marone. "Immunopharmacological modulation of mast cells." Current Opinion in Pharmacology 17 (August 2014): 45–57. http://dx.doi.org/10.1016/j.coph.2014.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simbirtsev, A. S. "Immunopharmacological aspects of the cytokine system." Bulletin of Siberian Medicine 18, no. 1 (2019): 84–95. http://dx.doi.org/10.20538/1682-0363-2019-1-84-95.

Full text
Abstract:
Cytokines represent a unique family of endogenous polypeptide mediators of intercellular interaction. From an immunopharmacological point of view cytokines can be marked out as a new, separate immunoregulatory molecule system and have some common biochemical properties and pleiotropic type of biological activity. In the cytokine regulatory system both reduction and elevation of cytokine levels can cause pathology. Several endogenous systems exist to control cytokine elevation and prevent tissue pathology. When synthesized simultaneously, cytokines form a cytokine chain. Deletion of any unit of this chain leads to the break in the formation of immunopathology. Cytokines as therapeutic preparations have evident advantages but also some limitations such as pharmacokinetics with short circulation period, adverse effects due to pleiotropic mode of action, and injectable drug forms. Rational design for clinical cytokine application could be linked with the development of prolonged and local drug forms or personalized cytokine therapy.
APA, Harvard, Vancouver, ISO, and other styles
7

Farjam, Mojtaba, Guang-Xian Zhang, Bogoljub Ciric, and Abdolmohamad Rostami. "Emerging immunopharmacological targets in multiple sclerosis." Journal of the Neurological Sciences 358, no. 1-2 (2015): 22–30. http://dx.doi.org/10.1016/j.jns.2015.09.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kouttab, N., M. Prada, and B. Brunetti. "Immunopharmacological profile of two synthetic tripeptides." International Journal of Immunopharmacology 10 (January 1988): 126. http://dx.doi.org/10.1016/0192-0561(88)90472-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

IVANOVSKA, NINA, STEFAN PHILIPOV, and PEPA GEORGIEVA. "IMMUNOPHARMACOLOGICAL ACTIVITY OF APORPHINOID ALKALOID OXOGLAUCINE." Pharmacological Research 35, no. 4 (1997): 267–72. http://dx.doi.org/10.1006/phrs.1996.9994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kirchhof, Julia, Liubov Petrakova, Alexandra Brinkhoff, et al. "Learned immunosuppressive placebo responses in renal transplant patients." Proceedings of the National Academy of Sciences 115, no. 16 (2018): 4223–27. http://dx.doi.org/10.1073/pnas.1720548115.

Full text
Abstract:
Patients after organ transplantation or with chronic, inflammatory autoimmune diseases require lifelong treatment with immunosuppressive drugs, which have toxic adverse effects. Recent insight into the neurobiology of placebo responses shows that associative conditioning procedures can be employed as placebo-induced dose reduction strategies in an immunopharmacological regimen. However, it is unclear whether learned immune responses can be produced in patient populations already receiving an immunosuppressive regimen. Thus, 30 renal transplant patients underwent a taste-immune conditioning paradigm, in which immunosuppressive drugs (unconditioned stimulus) were paired with a gustatory stimulus [conditioned stimulus (CS)] during the learning phase. During evocation phase, after patients were reexposed to the CS, T cell proliferative capacity was significantly reduced in comparison with the baseline kinetics of T cell functions under routine drug intake (ƞp2 = 0.34). These data demonstrate, proof-of-concept, that learned immunosuppressive placebo responses can be used as a supportive, placebo-based, dose-reduction strategy to improve treatment efficacy in an ongoing immunopharmacological regimen.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography