Academic literature on the topic 'Immunosuppressive cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Immunosuppressive cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Immunosuppressive cells"
Salminen, Antero. "Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases." Journal of Molecular Medicine 99, no. 1 (October 6, 2020): 1–20. http://dx.doi.org/10.1007/s00109-020-01988-7.
Full textHimes, Benjamin T., Timothy E. Peterson, Tristan de Mooij, Luz M. Cumba Garcia, Mi-Yeon Jung, Sarah Uhm, David Yan, et al. "The role of extracellular vesicles and PD-L1 in glioblastoma-mediated immunosuppressive monocyte induction." Neuro-Oncology 22, no. 7 (February 21, 2020): 967–78. http://dx.doi.org/10.1093/neuonc/noaa029.
Full textHimes, Benjamin, Timothy Peterson, Jasmine Tyson, Helen Lee, Tristan deMooij, Luz Cumba-Garcia, Mi-Yeon Jung, et al. "IMMU-36. THE ROLE OF PD-L1 IN GLIOBLASTOMA-DERIVED EXTRACELLULAR VESICLES IN THE INDUCTION OF IMMUNOSUPPRESSIVE MONOCYTES." Neuro-Oncology 21, Supplement_6 (November 2019): vi126—vi127. http://dx.doi.org/10.1093/neuonc/noz175.528.
Full textDíaz-Tejedor, Andrea, Mauro Lorenzo-Mohamed, Noemí Puig, Ramón García-Sanz, María-Victoria Mateos, Mercedes Garayoa, and Teresa Paíno. "Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression." Cancers 13, no. 6 (March 17, 2021): 1353. http://dx.doi.org/10.3390/cancers13061353.
Full textMiyazaki, Tsubasa, Eiichi Ishikawa, Narushi Sugii, and Masahide Matsuda. "Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment." Cancers 12, no. 7 (July 19, 2020): 1960. http://dx.doi.org/10.3390/cancers12071960.
Full textWang, Xiaojie, Daniel L. Metzger, Mark Meloche, Jianqiang Hao, Ziliang Ao, and Garth L. Warnock. "Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy." International Journal of Endocrinology 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/414812.
Full textKleist, Christian, Flavius Sandra-Petrescu, Lucian Jiga, Laura Dittmar, Elisabeth Mohr, Johann Greil, Walter Mier, et al. "Generation of suppressive blood cells for control of allograft rejection." Clinical Science 128, no. 9 (February 11, 2015): 593–607. http://dx.doi.org/10.1042/cs20140258.
Full textMorimoto-Ito, Hiroe, Masako Mizuno-Kamiya, Naoki Umemura, Yoshinori Inagaki, Eiji Takayama, Harumi Kawaki, Yasunori Muramatsu, Shinichiro Sumitomo, and Nobuo Kondoh. "Immunosuppressive Effect of Mesenchymal Stromal Cells is Enhanced by IL-1α from Oral Squamous Cell Carcinoma Cells." Open Dentistry Journal 13, no. 1 (June 30, 2019): 221–27. http://dx.doi.org/10.2174/1874210601913010221.
Full textVoll, Reinhard E., Martin Herrmann, Edith A. Roth, Christian Stach, Joachim R. Kalden, and Irute Girkontaite. "Immunosuppressive effects of apoptotic cells." Nature 390, no. 6658 (November 1997): 350–51. http://dx.doi.org/10.1038/37022.
Full textPavlath, G. K., T. A. Rando, and H. M. Blau. "Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers." Journal of Cell Biology 127, no. 6 (December 15, 1994): 1923–32. http://dx.doi.org/10.1083/jcb.127.6.1923.
Full textDissertations / Theses on the topic "Immunosuppressive cells"
Hamilton, Melisa June. "Immunosuppressive myeloid cells under normal and neoplastic conditions." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39661.
Full textAlves, Inês Sofia Moutinho. "Contribution of ER stress to tumor immunosuppressive microenvironment." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14290.
Full textBreast cancer is the most prevalent cancer among women and also one of the oncologic pathologies that causes more deaths. In the last decades several studies have reported that solid tumors generate an immunosuppressive microenvironment. This microenvironment (acidosis, hypoxia, glucose deprivation and cytokines) is favourable to endoplasmic reticulum (ER) stress induction. ER stress is primarily a response towards the re-establishment of homeostasis; however if not resolved it usually results in cell death by apoptosis. Nevertheless, ER stress and unfolded protein response (UPR) play a paradoxical role in cancer physiopathology: the three branches of UPR, PERK, IRE1 and ATF6 actively contribute to signalling of survival and metastasis mechanisms. Recently it was reported a possible transmission of ER stress from tumor cells to immune cells, modulating the phenotype and function of recipient cells. Thus, the aim of the present work is to assess the ability and the respective mechanisms by which T-47D tumor cells transmit ER stress to THP-1 monocytes, and the consequences of this transmission. ER stress transmission was only observed when pharmacological ER stress inducers were used, such as tunicamycin, contrarily to physiological stimulation, as glucose deprivation. Additionally, it was found that tunicamycin seems to be transported within exosomes which, in turn, directly induces ER stress on monocytes. It was also observed that exosomes derived from glucose deprived T-47D cells do not transmit ER stress; however these exosomes conduct monocytes towards a particular proinflammatory profile, accompanied by the decrease of its maturation status. Overall, our results question the ER stress mechanism originally described, showing that pharmacological ER stress inducers can be transported within exosomes and directly inducing ER stress on recipient cells.
O cancro da mama é o cancro de maior incidência entre as mulheres, sendo também uma das situações oncológicas que mais mortes causa. Na última década inúmeros estudos têm demonstrado que os tumores sólidos geram um microambiente favorável à evasão/subversão do sistema imune. Esse microambiente (acidose, hipoxia, deprivação de glucose, citoquinas) é muita das vezes propicio à indução de stress do reticulo endoplasmático (RE). O stress do RE é primariamente uma resposta no sentido de restabelecer a homeostasia no entanto se não resolvido resulta normalmente na morte celular por apoptose. O stress do RE e a respetiva resposta às proteínas mal conformadas (UPR), desempenham um papel paradoxal na fisiopatologia do cancro: os três ramos da UPR, PERK, IRE1 e ATF6, contribuem ativamente para a sinalização de alguns mecanismos de sobrevivência e metastização. Recentemente, foi descrita uma possível transmissão do stress do RE das células tumorais para as células do sistema imunitário, modulando a ação destas. Desta forma, pretendeu avaliar-se com o presente trabalho a capacidade e os mecanismos pelos quais células tumorais T-47D transmitem o stress do RE para células monocíticas THP-1, e quais as consequências desta transmissão. A transmissão foi apenas observada aquando da utilização de indutores farmacológicos como a tunicamicina, não se registando para estímulos fisiológicos como a deprivação de glucose. Por outro lado, verificou-se que a tunicamicina parece ser transportada via exossomas e desta forma induzir diretamente stress do RE nos monócitos. Observou-se ainda que os exossomas provenientes das células T-47D em stress do RE por deprivação de glucose apesar de não transmitirem o referido stress conduzem os monócitos para um perfil pró-inflamatório específico diminuindo ainda a sua capacidade de maturação. Em geral, os nossos resultados questionam seriamente o mecanismo de transmissão de stress ER tal como originalmente descrito, mostrando que no uso de indutores farmacológicos o que parece ocorrer é o transporte do fármaco em vesículas e a indução direta nas células recetoras.
Glennie, Sarah Jane. "The molecular mechanisms mediating the immunosuppressive effects of mesenchymal stem cells." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417349.
Full textKhanolkar, Rahul Chaitanya. "Molecular analysis of ABIN1 expression and immunosuppressive function in immature myeloid cells." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=202767.
Full textDelaney, Michael Paul. "Immunosuppressive drug interactions and resistance in mononuclear cells from renal transplant patients." Thesis, University of Warwick, 2001. http://wrap.warwick.ac.uk/3703/.
Full textDuque, Marta. "The immunosuppressive potential of human amniotic membrane extract." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15498.
Full textBoth mesenchymal stromal cells (MSCs) and human amniotic membrane (hAM) possess immunoregulatory potential, driving several studies to focus on their application in the prevention and treatment of immunological disorders, and especially on their ability to modulate T cell responses. However there is little information regarding the concrete effects over different activation and differentiation stages of T cells. The main objective of this study was to determine whether or not a hAM extract (hAME) had a differential effect over different T cell subpopulations (CD4+ and CD8+ T naïve, central memory, effector memory and effector cells). Thus, peripheral blood mononuclear cells (PBMC) were cultured in the presence or absence of hAME and stimulated with phorbol myristate acetate (PMA) plus ionomycin. Cell proliferation was evaluated through a thymidine incorporation assay and the percentages of pro-inflammatory cytokine producing T cells were determined by flow cytometry. The phenotype of hAM-derived cells was also assessed by flow cytometry. Plus, the mRNA expression of selected genes was evaluated in purified CD4+ and CD8+ T cells, regulatory T cells (Treg) and γδ T cells. The hAM-derived cells contained hAM epithelial cells and MSCs. The extract displayed an antiproliferative effect and reduced the frequency of tumor necrosis factor-alpha (TNFα), interferon gamma (IFNγ), and interleukin-2 (IL-2) producing cells, within all T cell subsets. The hAME also diminished the frequency of IL-17 and IL-9 producing T cells. The pattern of inhibition varied between CD4+ and CD8+ T cells, between T cell subsets, and depending on the cytokine under study. The hAME also produced a decrease in mRNA expression of granzime B, perforin and activating receptor NKG2D by CD8+ T cells, γδ T cells as well as an upregulation of Foxp3 and IL-10 gene expression in CD4+ T cells and an upregulation of IL-10 mRNA expression in Treg cells. These results show that the hAME differentially regulates different T cell subsets and therefore the effect of the hAME over T cells responses will depend on the T cell subpopulations involved. Still, the hAME has an overall antiinflammatory action.
Tanto as células mesenquimais do estroma (MSCs) como a membrana amniótica humana (hAM) possuem capacidade imunoreguladora, levando a que vários estudos se debrucem sobre a sua aplicação na prevenção e tratamento de doenças imunológicas, e especialmente sobre a sua capacidade de modular células T. No entanto, há pouca informação acerca dos efeitos concretos sobre diferentes fases de ativação e diferenciação de células T. O principal objetivo deste estudo foi determinar se um extrato de hAM (hAME) exerce efeito diferencial sobre diferentes subpopulações de células T (células T CD4+ e CD8+ naïve, memória central, memória efetoras e efetoras). Para esse efeito, células mononucleares do sangue periférico (PBMC) foram cultivadas na presença ou ausência de hAME e estimuladas com acetato miristato de forbol (PMA) mais ionomicina. A proliferação celular foi avaliada por um ensaio de incorporação de timidina e as percentagens de linfócitos T produtores de citocinas pró-inflamatórias foram determinadas por citometria de fluxo. O fenótipo de células derivadas de hAM foi também determinado por citometria de fluxo. Foi ainda estudada a expressão de mRNA em células T CD4+ e CD8+, células T reguladoras (Treg) e células T γδ purificadas. As células derivadas de hAM continham células epiteliais e MSCs. O extrato exibiu um efeito anti-proliferativo e reduziu a frequência de células produtoras de fator de necrose tumoral alfa (TNFα), interferão gama (IFNγ), e interleucina-2 (IL-2) em todas as subpopulações de células T estudadas, assim como a frequência de células T produtoras de IL-17 e IL-9. O padrão de inibição variou entre células T CD4+ e CD8+, entre cada subpopulação celular, e dependendo da citocina em estudo. O hAME provovou também diminuição da expressão de mRNA de granzima B, perforina e recetor de ativação NKG2D em células T CD8+e células T γδ, assim como o aumento de expressão de Foxp3 e IL-10 em células T CD4+, e aumento de expressão IL-10 em células Treg. O hAME regula diferencialmente diferentes subpopulações de células T e, portanto, o efeito do hAME sobre respostas de células T será dependente das subpopulações de células T envolvidas, ainda assim, hAME tem uma ação global anti-inflamatória.
Nurmenniemi, P. (Petri). "Inflammatory cells and mitotic activity of keratinocytes in gingival overgrowth induced by immunosuppressive- and nifedipine medication." Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514279964.
Full textFreeman, Lisa. "An investigation into the regulation of immunosuppressive steroids by human monocyte-derived dendritic cells." Thesis, University of Birmingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433428.
Full textCentuori, Sara Mozelle. "NEGATIVE REGULATION OF REGULATORY T CELLS BY MYELOID-DERIVED SUPPRESSOR CELLS IN CANCER." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145099.
Full textOchando, Jordi Cano. "In vitro studies of the effects of fungal-derived immunosuppressive agents on MCF7 breast cancer cells and MOLT4 leukaemia cells." Thesis, De Montfort University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393220.
Full textBooks on the topic "Immunosuppressive cells"
Ochando, Jordi Cano. In vitro studies of the effects of fungal-derived immunosuppressive agents on MCF7 breast cancer cells and MOLT4 leukaemia cells. Leicester: De Montfort University, 2002.
Find full textChen, Xin, and Magdalena Plebanski, eds. The Role of TNF-TNFR2 Signal in Immunosuppressive Cells and its Therapeutic Implications. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-306-7.
Full textB, Vogelsang Georgia, and Pavletic Steven, eds. Chronic graft versus host disease: Interdisciplinary management. Cambridge [England] ; New York: Cambridge University Press, 2009.
Find full textStrasfeld, Lynne. While the T Cells Were Sleeping. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199938568.003.0215.
Full textJean-François, Bach, ed. T-cell-directed immunointervention. Oxford [England]: Blackwell Scientific Publications, 1993.
Find full textDavid, Naor, ed. Immunosuppression and human malignancy. Clifton, N.J: Humana Press, 1989.
Find full textvan der Vlag, Johan, and Jo H. M. Berden. The patient with systemic lupus erythematosus. Edited by Giuseppe Remuzzi. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0161.
Full textCerhan, James R., Claire M. Vajdic, and John J. Spinelli. The Non-Hodgkin Lymphomas. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0040.
Full textKuypers, Dirk R. J., and Maarten Naesens. Immunosuppression. Edited by Jeremy R. Chapman. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0281_update_001.
Full textMisbah, Siraj. Immunosuppressive therapy and therapeutic monoclonal antibodies. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0302.
Full textBook chapters on the topic "Immunosuppressive cells"
Lanza, Francesco, Diana Campioni, Endri Mauro, Annalisa Pasini, and Roberta Rizzo. "Immunosuppressive Properties of Mesenchymal Stromal Cells." In Advances in Stem Cell Research, 281–301. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-940-2_15.
Full textHachimura, S., T. Hisatsune, Y. Minai, and S. Kaminogawa. "Immunosuppressive Functions of Cells from Intestinal Tissues." In Animal Cell Technology: Basic & Applied Aspects, 491–97. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2844-5_66.
Full textKalesnikoff, Janet, and Stephen J. Galli. "Antiinflammatory and Immunosuppressive Functions of Mast Cells." In Methods in Molecular Biology, 207–20. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-869-0_15.
Full textKusmartsev, Sergei A., I. N. Kusmartseva, S. G. Afanasyev, and N. V. Cherdyntseva. "Immunosuppressive Cells in Bone Marrow of Patients with Stomach Cancer." In Advances in Experimental Medicine and Biology, 189–94. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5357-1_30.
Full textPark, Joshua K., Nathan J. Coffey, Aaron Limoges, and Anne Le. "The Heterogeneity of Lipid Metabolism in Cancer." In The Heterogeneity of Cancer Metabolism, 39–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_3.
Full textFord, Megan S., and Li Zhang. "The Development, Activation, Function and Mechanisms of Immunosuppressive Double Negative (DN) T Cells." In Regulatory T Cells and Clinical Application, 543–61. New York, NY: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-77909-6_29.
Full textDazzi, Francesco, and Ilaria Marigo. "The Immunosuppressive Properties of Adult Stem Cells: Mesenchymal Stem Cells as a Case Study." In The Immunological Barriers to Regenerative Medicine, 175–97. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5480-9_10.
Full textZamiri, Parisa, Sunao Sugita, and J. Wayne Streilein. "Immunosuppressive Properties of the Pigmented Epithelial Cells and the Subretinal Space." In Immune Response and the Eye, 86–93. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000099259.
Full textSasso, Maria Stella, Vincenzo Bronte, and Ilaria Marigo. "Cancer Immune Modulation and Immunosuppressive Cells: Current and Future Therapeutic Approaches." In Nano-Oncologicals, 187–214. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_7.
Full textKawakami, Yutaka, Tomonori Yaguchi, Hidetoshi Sumimoto, Chie Kudo-Saito, Nobuo Tsukamoto, Tomoko Iwata-Kajihara, Shoko Nakamura, et al. "Roles of Signaling Pathways in Cancer Cells and Immune Cells in Generation of Immunosuppressive Tumor-Associated Microenvironments." In The Tumor Immunoenvironment, 307–23. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6217-6_12.
Full textConference papers on the topic "Immunosuppressive cells"
Lu, Xin. "Abstract 4063: Target immunosuppressive myeloid cells to enhance cancer immunotherapy." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4063.
Full textFernandez, I. E., F. R. Greiffo, V. Viteri-Alvarez, I. Bastidas, R. Roy, M. Frankenberger, J. Behr, A. Forrest, A. Hilgendorff, and O. Eickelberg. "Myeloid-Derived Suppressor Cells Orchestrate Immunosuppressive Networks in Idiopathic Pulmonary Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1231.
Full textRollison, Dana E., Neil A. Fenske, Basil Cherpelis, Jane L. Messina, Yayi Zhao, Rossybelle P. Amorrortu, Rebecca Hesterberg, and Pearlie K. Epling-Burnette. "Abstract 3492: Circulating immunosuppressive regulatory T cells and risk of incident cutaneous squamous cell carcinoma." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3492.
Full textHuijts, Charlotte M., Famke L. Schneiders, Henk M. Verheul, Tanja D. de Gruijl, and Hans J. van der Vliet. "Abstract 4720: mTOR inhibition is required for conversion of invariant NKT cells into immunosuppressive regulatory cells." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4720.
Full textChang, ZeNan L., Michael H. Lorenzini, and Yvonne Y. Chen. "Abstract IA08: Engineering T cells to resist and convert immunosuppressive tumor microenvironments." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-ia08.
Full textRollison, Dana E., Shalaka S. Hampras, Jane L. Messina, Neil A. Fenske, Basil S. Cherpelis, Michael J. Schell, Rhianna Reed, et al. "Abstract 4960: Recent ultraviolet radiation exposure and circulating immunosuppressive T-regulatory cells." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4960.
Full textLong, Meixiao, Kyle A. Beckwith, Priscilla Do, Amber Gordon, Amy Lehman, Kami Maddocks, Carolyn Cheney, et al. "Abstract B041: Ibrutinib treatment counteracts the immunosuppressive activity of malignant B cells." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-b041.
Full textHall, SRR, L. Wang, C. Simillion, S. Berezowska, P. Dorn, RW Peng, TM Marti, and RA Schmid. "Tumor associated CD90+ mesenchymal cells are chemoresistant and immunosuppressive in human non-small cell lung cancer." In DACH-Jahrestagung Thoraxchirurgie. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1694179.
Full textMirlekar, Bhalchandra, and Yuliya Pylayeva-Gupta. "Abstract PR21: IL-35+ B cells establish immunosuppressive network in pancreatic ductal adenocarcinoma." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 27-30, 2018; Miami Beach, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm18-pr21.
Full textKhramtsova, Galina F., Rita Nanda, Ekaterina A. Khramtsova, Lise Sveen, Sope Olugbile, and Olufunmilayo I. Olopade. "Abstract 462: Cytotoxic CD8+ T cells and immunosuppressive T regulatory cells are associated with aggressive breast cancer subtypes." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-462.
Full text