Journal articles on the topic 'Impedimetric Sensor*'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Impedimetric Sensor*.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gongi, Wejdene, Maxence Rube, Hafedh Ben Ouada, Hatem Ben Ouada, Ollivier Tamarin, and Corinne Dejous. "Elaboration and Characterization of a New Heavy Metal Sensor Functionalized by Extracellular Polymeric Substances Isolated from a Tunisian Thermophilic Microalga Strain Graesiella sp." Sensors 23, no. 2 (2023): 803. http://dx.doi.org/10.3390/s23020803.
Full textNakazato, Kazuo. "Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2012 (2014): 20130109. http://dx.doi.org/10.1098/rsta.2013.0109.
Full textJiang, Keren, Hashem Etayash, Sarfuddin Azmi, et al. "Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy." Analytical Methods 7, no. 23 (2015): 9744–48. http://dx.doi.org/10.1039/c5ay01917f.
Full textPetani, Lisa, Valerie Wehrheim, Liane Koker, et al. "Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy." Flexible and Printed Electronics 6, no. 4 (2021): 043003. http://dx.doi.org/10.1088/2058-8585/ac32ab.
Full textHudson, Trevor Q., and Ellis Meng. "A Continuous, Impedimetric Parylene Flow Sensor." Journal of Microelectromechanical Systems 30, no. 3 (2021): 456–70. http://dx.doi.org/10.1109/jmems.2021.3067573.
Full textChabbah, Taha, Houyem Abderrazak, Radhia Souissi, et al. "A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions." Chemosensors 8, no. 2 (2020): 34. http://dx.doi.org/10.3390/chemosensors8020034.
Full textRusen, Edina, Aurel Diacon, Alexandra Mocanu, et al. "Synthesis and retention properties of molecularly imprinted polymers for antibiotics containing a 5-nitrofuran ring." RSC Advances 7, no. 80 (2017): 50844–52. http://dx.doi.org/10.1039/c7ra10196a.
Full textAwasthi, Prasoon, Ranjan Mukherjee, Siva Prakasam O Kare, and Soumen Das. "Impedimetric blood pH sensor based on MoS2–Nafion coated microelectrode." RSC Advances 6, no. 104 (2016): 102088–95. http://dx.doi.org/10.1039/c6ra17786g.
Full textPal, Nabamita, Gaurab Dutta, Khawlah Kharashi, and Erica Murray. "Investigation of an Impedimetric LaSrMnO3-Au/Y2O3-ZrO2-Al2O3 Composite NOx Sensor." Materials 15, no. 3 (2022): 1165. http://dx.doi.org/10.3390/ma15031165.
Full textImali, D. Yureka, E. Chavin J. Perera, M. N. Kaumal, and Dhammike P. Dissanayake. "Fabrication and characterization of a flexible and disposable impedance-type humidity sensor based on polyaniline (PAni)." RSC Advances 13, no. 10 (2023): 6396–411. http://dx.doi.org/10.1039/d3ra00009e.
Full textBai, Huiwen, Kateryna Vyshniakova, Egon Pavlica, et al. "Organic Electrochemical, PEDOT:PSS-Based Impedimetric Histamine Sensor." ECS Meeting Abstracts MA2020-01, no. 29 (2020): 2225. http://dx.doi.org/10.1149/ma2020-01292225mtgabs.
Full textLabib, Mahmoud, Anna S. Zamay, Darija Muharemagic, Alexey V. Chechik, John C. Bell, and Maxim V. Berezovski. "Aptamer-Based Viability Impedimetric Sensor for Viruses." Analytical Chemistry 84, no. 4 (2012): 1813–16. http://dx.doi.org/10.1021/ac203412m.
Full textLabib, Mahmoud, Anna S. Zamay, Olga S. Kolovskaya, et al. "Aptamer-Based Impedimetric Sensor for Bacterial Typing." Analytical Chemistry 84, no. 19 (2012): 8114–17. http://dx.doi.org/10.1021/ac302217u.
Full textLabib, Mahmoud, Anna S. Zamay, Olga S. Kolovskaya, et al. "Aptamer-Based Viability Impedimetric Sensor for Bacteria." Analytical Chemistry 84, no. 21 (2012): 8966–69. http://dx.doi.org/10.1021/ac302902s.
Full textZhang, Keying, Na Zhang, Li Zhang, Hongyan Wang, Hongwei Shi, and Qiao Liu. "Label-free impedimetric sensing platform for microRNA-21 based on ZrO2-reduced graphene oxide nanohybrids coupled with catalytic hairpin assembly amplification." RSC Advances 8, no. 29 (2018): 16146–51. http://dx.doi.org/10.1039/c8ra02453g.
Full textKumar, L. S. Selva, Xiao Wang, Joshua Hagen, Rajesh Naik, Ian Papautsky, and Jason Heikenfeld. "Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat." Analytical Methods 8, no. 17 (2016): 3440–44. http://dx.doi.org/10.1039/c6ay00331a.
Full textCao, Shuo-Hui, Lun-Hui Li, Wen-Yin Wei, et al. "A label-free and ultrasensitive DNA impedimetric sensor with enzymatic and electrical dual-amplification." Analyst 144, no. 14 (2019): 4175–79. http://dx.doi.org/10.1039/c9an00682f.
Full textPfeffer, Christian, Yue Liang, Helmut Grothe, Bernhard Wolf, and Ralf Brederlow. "Towards Easy-to-Use Bacteria Sensing: Modeling and Simulation of a New Environmental Impedimetric Biosensor in Fluids." Sensors 21, no. 4 (2021): 1487. http://dx.doi.org/10.3390/s21041487.
Full textPatil, U. V., C. S. Rout та D. J. Late. "Impedimetric humidity sensor based on α-Fe2O3 nanoparticles". Advanced Device Materials 1, № 3 (2015): 88–92. http://dx.doi.org/10.1080/20550308.2015.1133101.
Full textZlatev, Roumen, Margarita Stoytcheva, Benjamin Valdez, Gisela Montero, and Lydia Toscano. "Simple impedimetric sensor for rapid lipase activity quantification." Talanta 203 (October 2019): 161–67. http://dx.doi.org/10.1016/j.talanta.2019.05.059.
Full textBen Messaoud, Najib, Abdoullatif Baraket, Cherif Dridi, Naglaa M. Nooredeen, Mohammed Nooredeen Abbas, and Abdelhamid Errachid. "A Highly Sensitive Miniaturized Impedimetric Perchlorate Chemical Sensor." IEEE Sensors Journal 18, no. 4 (2018): 1343–50. http://dx.doi.org/10.1109/jsen.2017.2780445.
Full textKamal, Ajar, Zhe She, Renu Sharma, and Heinz-Bernhard Kraatz. "Interactions of Hg(ii) with oligonucleotides having thymine–thymine mispairs. Optimization of an impedimetric Hg(ii) sensor." Analyst 142, no. 10 (2017): 1827–34. http://dx.doi.org/10.1039/c7an00238f.
Full textSofer, Zdenek, Daniel Bouša, Jan Luxa, Vlastimil Mazanek, and Martin Pumera. "Few-layer black phosphorus nanoparticles." Chemical Communications 52, no. 8 (2016): 1563–66. http://dx.doi.org/10.1039/c5cc09150k.
Full textAntonatos, Nikolas, Vlastimil Mazánek, Petr Lazar, Jiri Sturala, and Zdeněk Sofer. "Acetonitrile-assisted exfoliation of layered grey and black arsenic: contrasting properties." Nanoscale Advances 2, no. 3 (2020): 1282–89. http://dx.doi.org/10.1039/c9na00754g.
Full textDzulkurnain, Nurul Akmaliah, Marliyana Mokhtar, Jahwarhar Izuan Abdul Rashid, et al. "A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications." Polymers 13, no. 16 (2021): 2728. http://dx.doi.org/10.3390/polym13162728.
Full textHerrmann, Julia, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker, and Ralf Moos. "Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen." Journal of Sensors and Sensor Systems 9, no. 2 (2020): 327–35. http://dx.doi.org/10.5194/jsss-9-327-2020.
Full textPetani, Lisa, Liane Koker, Janina Herrmann, Veit Hagenmeyer, Ulrich Gengenbach, and Christian Pylatiuk. "Recent Developments in Ozone Sensor Technology for Medical Applications." Micromachines 11, no. 6 (2020): 624. http://dx.doi.org/10.3390/mi11060624.
Full textKarthick Kannan, Padmanathan, та Ramiah Saraswathi. "An impedimetric ammonia sensor based on nanostructured α-Fe2O3". J. Mater. Chem. A 2, № 2 (2014): 394–401. http://dx.doi.org/10.1039/c3ta13553e.
Full textWu, Bowan, Zhihua Wang, Dongxia Zhao, and Xiaoquan Lu. "A novel molecularly imprinted impedimetric sensor for melamine determination." Talanta 101 (November 2012): 374–81. http://dx.doi.org/10.1016/j.talanta.2012.09.044.
Full textBratov, Andrey, Natalia Abramova, Andrey Ipatov, and Angel Merlos. "An impedimetric chemical sensor for determination of detergents residues." Talanta 106 (March 2013): 286–92. http://dx.doi.org/10.1016/j.talanta.2012.10.083.
Full textArshad, Rabia, Amina Rhouati, Akhtar Hayat, et al. "MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker." Applied Biochemistry and Biotechnology 191, no. 4 (2020): 1384–94. http://dx.doi.org/10.1007/s12010-020-03285-y.
Full textShi, Liu, Gang Liang, Xiaohong Li, and Xinhui Liu. "Impedimetric DNA sensor for detection of Hg2+ and Pb2+." Analytical Methods 4, no. 4 (2012): 1036. http://dx.doi.org/10.1039/c2ay05758a.
Full textAbramova, Natalia, and Andrey Bratov. "Title Monitoring Protamine-Heparin Interactions Using Microcapillary Impedimetric Sensor." Electroanalysis 27, no. 3 (2015): 663–69. http://dx.doi.org/10.1002/elan.201400581.
Full textRadi, Abd‐Elgawad, Alsayed Eissa, and Tarek Wahdan. "Molecularly Imprinted Impedimetric Sensor for Determination of Mycotoxin Zearalenone." Electroanalysis 32, no. 8 (2020): 1788–94. http://dx.doi.org/10.1002/elan.201900528.
Full textLu, Tianqi, Ammar Al-Hamry, Junfeng Hao, Yang Liu, Yunze Qu, and Olfa Kanoun. "Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue." Chemosensors 10, no. 11 (2022): 474. http://dx.doi.org/10.3390/chemosensors10110474.
Full textLow, Yu Kong, Jianxiong Chan, Gita V. Soraya, et al. "Development of an Ultrasensitive Impedimetric Immunosensor Platform for Detection of Plasmodium Lactate Dehydrogenase." Sensors 19, no. 11 (2019): 2446. http://dx.doi.org/10.3390/s19112446.
Full textTian, Jian, Jiangan Xie, Zhonghua He, Dui Qin, and Xiuxin Wang. "Modeling of an Impedimetric Biosensor with Ultrasonic-Assisted Cell Alignment for the Detection of Yeast." Journal of Sensors 2022 (September 24, 2022): 1–14. http://dx.doi.org/10.1155/2022/4514218.
Full textBetatache, Amina, Mohamed Braiek, Jean François Chateaux, Florence Lagarde, and Nicole Jaffrezic-Renault. "Molecular Imprinted Poly(Ethyleneco-Vinyl Alcohol) Nanofibers Electrospun on Gold Electrodes for Impedimetric Creatinine Sensing." Key Engineering Materials 543 (March 2013): 84–88. http://dx.doi.org/10.4028/www.scientific.net/kem.543.84.
Full textPandey, Chandra Mouli, Gajjala Sumana, and Bansi D. Malhotra. "Microstructured Cystine Dendrites-Based Impedimetric Sensor for Nucleic Acid Detection." Biomacromolecules 12, no. 8 (2011): 2925–32. http://dx.doi.org/10.1021/bm200490b.
Full textSingh, Swati, Ankur Kaushal, Sunil Gupta, and Ashok Kumar. "Gene Specific Impedimetric Bacterial DNA Sensor for Rheumatic Heart Disease." Indian Journal of Microbiology 57, no. 1 (2016): 112–15. http://dx.doi.org/10.1007/s12088-016-0620-6.
Full textLu, Tianqi, Ammar Al-Hamry, José Mauricio Rosolen, et al. "Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties." Chemosensors 9, no. 12 (2021): 360. http://dx.doi.org/10.3390/chemosensors9120360.
Full textSepunaru, Lior, and Connor Davis. "Impedance Characterization of OECT Behavior in Enzyme-Embedded Conductive Polymer Matrix." ECS Meeting Abstracts MA2022-01, no. 52 (2022): 2151. http://dx.doi.org/10.1149/ma2022-01522151mtgabs.
Full textCarotenuto, Gianfranco, and Luigi Nicolais. "Electrical Method for In Vivo Testing of Exhalation Sensors Based on Natural Clinoptilolite." Coatings 12, no. 3 (2022): 377. http://dx.doi.org/10.3390/coatings12030377.
Full textChakraborty, Titisha, Munmun Das, Chan-Yu Lin, Yen Su, Bing Yuan, and Chyuan-Haur Kao. "ZIF-8 Nanoparticles Based Electrochemical Sensor for Non-Enzymatic Creatinine Detection." Membranes 12, no. 2 (2022): 159. http://dx.doi.org/10.3390/membranes12020159.
Full textChung, Saeromi, Lars Bode, and Drew A. Hall. "Point-of-care human milk testing for maternal secretor status." Analytical and Bioanalytical Chemistry 414, no. 10 (2021): 3187–96. http://dx.doi.org/10.1007/s00216-021-03697-7.
Full textCarotenuto, Gianfranco. "New Method to Detect Zeolite Breath Sensor Response Based on Low-Power Square-Wave Sources." European Journal of Engineering and Technology Research 4, no. 10 (2019): 152–54. http://dx.doi.org/10.24018/ejeng.2019.4.10.1594.
Full textCarotenuto, Gianfranco. "A New Method to Detect Zeolite Breath Sensor Response Based on Low-Power Square-Wave Sources." European Journal of Engineering Research and Science 4, no. 10 (2019): 152–54. http://dx.doi.org/10.24018/ejers.2019.4.10.1594.
Full textWang, Wenyu, Karim Ouaras, Alexandra L. Rutz, et al. "Inflight fiber printing toward array and 3D optoelectronic and sensing architectures." Science Advances 6, no. 40 (2020): eaba0931. http://dx.doi.org/10.1126/sciadv.aba0931.
Full textMandayo, Gemma García, Jaime Herrán, Irene Castro-Hurtado, and Enrique Castaño. "Performance of a CO2 Impedimetric Sensor Prototype for Air Quality Monitoring." Sensors 11, no. 5 (2011): 5047–57. http://dx.doi.org/10.3390/s110505047.
Full textKang, Su Jin, Suseong Kim, Kyuhong Lee, Ik-Soo Shin, and Yang-Rae Kim. "Tunable Electrochemical Grafting of Diazonium for Highly Sensitive Impedimetric DNA Sensor." Journal of The Electrochemical Society 167, no. 8 (2020): 087504. http://dx.doi.org/10.1149/1945-7111/ab8ce8.
Full text