Academic literature on the topic 'Implantable biosensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Implantable biosensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Implantable biosensor"

1

Rodrigues, Daniela, Ana I. Barbosa, Rita Rebelo, Il Keun Kwon, Rui L. Reis, and Vitor M. Correlo. "Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review." Biosensors 10, no. 7 (July 21, 2020): 79. http://dx.doi.org/10.3390/bios10070079.

Full text
Abstract:
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body’s biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.
APA, Harvard, Vancouver, ISO, and other styles
2

Puggioni, Giulia, Giammario Calia, Paola Arrigo, Andrea Bacciu, Gianfranco Bazzu, Rossana Migheli, Silvia Fancello, Pier Serra, and Gaia Rocchitta. "Low-Temperature Storage Improves the Over-Time Stability of Implantable Glucose and Lactate Biosensors." Sensors 19, no. 2 (January 21, 2019): 422. http://dx.doi.org/10.3390/s19020422.

Full text
Abstract:
Molecular biomarkers are very important in biology, biotechnology and even in medicine, but it is quite hard to convert biology-related signals into measurable data. For this purpose, amperometric biosensors have proven to be particularly suitable because of their specificity and sensitivity. The operation and shelf stability of the biosensor are quite important features, and storage procedures therefore play an important role in preserving the performance of the biosensors. In the present study two different designs for both glucose and lactate biosensor, differing only in regards to the containment net, represented by polyurethane or glutharaldehyde, were studied under different storage conditions (+4, −20 and −80 °C) and monitored over a period of 120 days, in order to evaluate the variations of kinetic parameters, as VMAX and KM, and LRS as the analytical parameter. Surprisingly, the storage at −80 °C yielded the best results because of an unexpected and, most of all, long-lasting increase of VMAX and LRS, denoting an interesting improvement in enzyme performances and stability over time. The present study aimed to also evaluate the impact of a short-period storage in dry ice on biosensor performances, in order to simulate a hypothetical preparation-conservation-shipment condition.
APA, Harvard, Vancouver, ISO, and other styles
3

Acquaroli, Leandro N., Tim Kuchel, and Nicolas H. Voelcker. "Towards implantable porous silicon biosensors." RSC Adv. 4, no. 66 (2014): 34768–73. http://dx.doi.org/10.1039/c4ra04184d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Do Thi Hong, Diep, Duong Le Phuoc, Hoai Nguyen Thi, Serra Pier Andrea, and Rocchitta Gaia. "THE ROLE OF POLYETHYLENIMINE IN ENHANCING PERFORMANCE OF GLUTAMATE BIOSENSORS." Volume 8 Issue 3 8, no. 3 (June 2018): 36–41. http://dx.doi.org/10.34071/jmp.2018.3.6.

Full text
Abstract:
Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors
APA, Harvard, Vancouver, ISO, and other styles
5

Wisniewski, Natalie, F. Moussy, and W. M. Reichert. "Characterization of implantable biosensor membrane biofouling." Fresenius' Journal of Analytical Chemistry 366, no. 6-7 (March 30, 2000): 611–21. http://dx.doi.org/10.1007/s002160051556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edelberg, Jay M., Jason T. Jacobson, David S. Gidseg, Lilong Tang, and David J. Christini. "Enhanced myocyte-based biosensing of the blood-borne signals regulating chronotropy." Journal of Applied Physiology 92, no. 2 (February 1, 2002): 581–85. http://dx.doi.org/10.1152/japplphysiol.00672.2001.

Full text
Abstract:
Biosensors play a critical role in the real-time determination of relevant functional physiological needs. However, typical in vivo biosensors only approximate endogenous function via the measurement of surrogate signals and, therefore, may often lack a high degree of dynamic fidelity with physiological requirements. To overcome this limitation, we have developed an excitable tissue-based implantable biosensor approach, which exploits the inherent electropotential input-output relationship of cardiac myocytes to measure the physiological regulatory inputs of chronotropic demand via the detection of blood-borne signals. In this study, we report the improvement of this application through the modulation of host-biosensor communication via the enhancement of vascularization of chronotropic complexes in mice. Moreover, in an effort to further improve translational applicability as well as molecular plasticity, we have advanced this approach by employing stem cell-derived cardiac myocyte aggregates in place of whole cardiac tissue. Overall, these studies demonstrate the potential of biologically based biosensors to predict endogenous physiological dynamics and may facilitate the translation of this approach for in vivo monitoring.
APA, Harvard, Vancouver, ISO, and other styles
7

Çağlayan, Zeynep, Yağmur Demircan Yalçın, and Haluk Külah. "A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis." Micromachines 11, no. 11 (November 3, 2020): 990. http://dx.doi.org/10.3390/mi11110990.

Full text
Abstract:
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Zu'bi, Muneer M., and Ananda Sanagavarapu Mohan. "Implantable Biosensor Interface Platform for Monitoring of Atherosclerosis." IEEE Sensors Letters 4, no. 2 (February 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.2968122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Bazhang,. "Coil-type implantable glucose biosensor with excess enzyme loading." Frontiers in Bioscience 10, no. 1-3 (2005): 512. http://dx.doi.org/10.2741/1547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Qingling, Plamen Atanasov, and Ebtisam Wilkins. "A novel amperometric transducer design for needle-type implantable biosensor applications." Electroanalysis 9, no. 16 (November 1997): 1252–56. http://dx.doi.org/10.1002/elan.1140091607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Implantable biosensor"

1

Steinberg, Matthew David. "An implantable glucose biosensor." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jaffari, Samarah A. "A potentially implantable amperometric glucose biosensor." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pierce, Mary E. "Engineering a fiber-optic implantable cardiovascular biosensor /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1422954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ju, Young Min. "A Novel Biostable 3D Porous Collagen Scaffold for Implantable Biosensor." Scholar Commons, 2007. https://scholarcommons.usf.edu/etd/323.

Full text
Abstract:
Diabetes is a chronic metabolic disorder whereby the body loses its ability to maintain normal glucose levels. Despite of development of implantable glucose sensors in long periods, none of the biosensors are capable of continuously monitoring glucose levels during long-term implantation reliably. Progressive loss of sensor function occurs due in part to biofouling and to the consequences of a foreign body response such as inflammation, fibrosis, and loss of vasculature. In order to improve the function and lifetime of implantable glucose sensors, a new 3D porous and bio-stable collagen scaffold has been developed to improve the biocompatibility of implantable glucose sensors. The novel collagen scaffold was crosslinked using nordihydroguaiaretic acid (NDGA) to enhance biostability. NDGA-treated collagen scaffolds were stable without any physical deformation in the subcutaneous tissue of rats for 4 weeks. The scaffold application does not impair the function of our sensor. The effect of the scaffolds on sensor function and biocompatibility was examined during long-term in vitro and in vivo experiments and compared with control bare sensors. The sensitivity of the short sensors was greater than the sensitivity of long sensors presumably due to less micro-motions in the sub-cutis of the rats. The NDGA-crosslinked scaffolds induced much less inflammation and retained their physical structure in contrast to the glutaraldehyde (GA)-crosslinked scaffolds. We also have developed a new dexamethasone (Dex, anti-inflammatory drug)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres/porous collagen scaffold composite for implantable glucose sensors. The composite system showed a much slower and sustained drug release than the standard microspheres. The composite system was also shown to not significantly affect the function of the sensors. The sensitivity of the sensors with the composite system in vivo remained higher than for sensors without the composites (no scaffold, scaffold without microspheres). Histology showed that the inflammatory response to the Dex-loaded composite was much lower than for the control scaffold. The Dex-loaded composite system might be useful to reduce inflammation to glucose sensors and therefore extend their function and lifetime.
APA, Harvard, Vancouver, ISO, and other styles
5

Ju, Young Min. "A novel bio-stable 3D porous collagen scaffold for implantable biosensor." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Katic, Janko. "Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206588.

Full text
Abstract:
Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces. Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency. The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW.
Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt. Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten. Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW.

QC 20170508


Mi-SoC
APA, Harvard, Vancouver, ISO, and other styles
7

Govindarajan, Sridhar. "Development of an implantable biosensor suitable for continuous monitoring of glutamate in the brain." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vasylieva, Natalia. "Implantable microelectrode biosensors for neurochemical monitoring of brain functioning." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00861119.

Full text
Abstract:
Identification, monitoring and quantification of biomolecules in the CNS is a field of growing interest for identifying biomarkers of neurological diseases. In this thesis, silicon needle-shaped multi-molecules sensing microprobes were developed. Our microelectrode array design comprises a needle length of 6mm with 100x50 µm2 cross-section bearing three platinum electrodes with a size of 40x200 µm and 200µm spacing between them. We have used these microprobes for simultaneous glucose and lactate monitoring, using the third electrode for control of non-specific current variations. Local microdroplet protein deposition on the electrode surface was achieved using a pneumatic picopump injection system. Enzyme immobilization on the electrode surface is a key step in microelectrode biosensor fabrication. We have developed a simple, low cost, non-toxic enzyme immobilization method employing poly(ethyleneglycol) diglycidyl ether (PEGDE). Successful biosensor fabrication was demonstrated with glucose oxidase, D-amino acid oxidase, and glutamate oxidase. We found that these biosensors exhibited high sensitivity and short response time sufficient for observing biological events in vivo on a second-by-second timescale. PEGDE-based biosensors demonstrated an excellent long-term stability and reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose solution. We then carried out a comparative study of five enzyme immobilization procedures commonly used in Neuroscience: covalent immobilization by cross-linking using glutaraldehyde, PEGDE, or a hydrogel matrix and enzyme entrapment in a sol-gel or polypyrrole-derived matrices. Enzymatic microelectrodes prepared using these different procedures were compared in terms of sensitivity, response time, linear range, apparent Michaelis-Menten constant, stability and selectivity. We conclude that PEGDE and sol-gel techniques are potentially promising procedures for in vivo laboratory studies. The comparative study also revealed that glutaraldehyde significantly decreased enzyme selectivity while PEGDE preserved it. The effects that immobilization can have on enzyme substrate specificity, produce dramatic consequences on glutamate detection in complex biological samples and in the CNS. Our biosensor's results were systematically controlled by HPLC or capillary electrophoresis. The highly selective PEGDE-based biosensors allowed accurate measurements glutamate concentrations in the anesthetized and awaked rats at physiological conditions and under pharmacological and electrical stimulations. The microfabricated multielectrodes based on silicon needles coupled to the simple, non-toxic and mild immobilization method based on PEGDE, open new possibilities for specific neurotransmitter detection in the central nervous system and the study of cell-cell communication in vivo.
APA, Harvard, Vancouver, ISO, and other styles
9

Cordero, Álvarez Rafael. "Subcutaneous Monitoring of Cardiac Activity for Chronically Implanted Medical Devices." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS020.

Full text
Abstract:
L'objectif de cette thèse de doctorat est le développement de capteurs et d'algorithmes pour une meilleure surveillance de l'activité cardiaque dans un défibrillateur cardioverteur implantable sous-cutané (S-ICD), et plus précisément pour améliorer la spécificité de détection des tachyarythmies dangereuses telles que la tachycardie ventriculaire (TV) et la fibrillation ventriculaire (FV) dans le S-ICD. Deux schémas de détection TV/FV indépendants ont été développés dans ce but : l'un de nature électrophysiologique et l'autre hémodynamique. Le schéma de détection électrophysiologique repose sur un ECG spécial qui a été enregistré le long d'un dipôle «court» situé au-dessus du grand pectoral inférieur gauche. Ce dipôle court maximise le rapport R/T et le rapport signal/bruit chez 9 volontaires sains. En théorie, cela devrait réduire le risque de détections faussement positives de TV/ FV simplement en raison de la taille, de l'emplacement et de l'orientation du dipôle, indépendamment de toute autre méthode de traitement du signal. Le schéma de détection hémodynamique repose quant à lui sur les vibrations cardiaques enregistrées par deux prototypes de capteurs accéléromètres triaxiaux. Les vibrations cardiaques sous-cutanées mesurées ont été caractérisées, validées physiologiquement et optimisées via leur filtrage le long de bandes passantes spécifiques et leur projection le long d'un référentiel spécifique patient. Le premier algorithme au monde indépendant de détection de FV par vibration cardiaque a été développé en opérant sur ces signaux optimisés. Les mêmes prototypes d'accéléromètre se sont également avérés capables d'enregistrer des accélérations respiratoires et de détecter l'apnée. Enfin, un dernier prototype de sonde sous-cutanée composite, composé de trois électrodes, d'un accéléromètre bi-axial et de connecteurs d'appareil standard. Ce prototype est capable d'enregistrer l'ECG dipolaire court, les vibrations cardiaques et les accélérations respiratoires. Cette sonde prototype a été implantée dans un quatrième et dernier animal
The aim of this doctoral thesis was the development of sensors and algorithms for the improved monitoring of cardiac activity in the subcutaneous implantable cardioverter-defibrillator (SICD). More precisely, to improve the detection specificity of dangerous tachyarrhythmia such as ventricular tachycardia (VT) and ventricular fibrillation (VF). Two independent VT/VF detection schemes were developed for this: one electrophysiological in nature, and the other hemodynamic. The electrophysiological sensing scheme relied on a special ECG that was recorded along a short dipole located above the lower left pectoralis major. This short dipole maximised R/T ratio and signal-to-noise ratio in a total of 9 healthy volunteers. In theory, it will reduce the risk of false positive VT/VF detections simply by consequence of the dipole size, location, and orientation and independently of any further signal processing methods. The hemodynamic sensing scheme relied on cardiac vibrations recorded from two tri-axial accelerometer prototype sensors. These subcutaneous cardiac vibrations were characterised, physiologically validated, and optimised via their filtering along specific bandwidths and projection along a patient specific reference frame. The world’s first independent cardiac vibration VF detection algorithm was developed operating on these optimised signals. The same accelerometer prototypes were also shown to be able to record respiratory accelerations and detect apnoea. A final subcutaneous lead prototype was developed capable of recording the short dipole ECG, cardiac vibrations, and respiratory accelerations. It consisted of three electrodes, a bi-axial accelerometer, and industry-standard device connectors. The prototype lead was implanted in a fourth and final animal
APA, Harvard, Vancouver, ISO, and other styles
10

Rey, Jose. "Guiding Electric Fields for Electroporation Applications." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3308.

Full text
Abstract:
Electroporation is the critical step in an electric field mediated drug or gene delivery protocol. Electroporation based protocols have been successfully demonstrated in cancer clinical trials, however, its impact in other applications is still under investigation. A significant roadblock to long term functioning of implantable biosensors in vivo is the tissue reaction in the form of fibrous encapsulation that results in reduced transport to the sensing element of the biosensor. In vivo gene electroporation has a great potential as a means to modify the transport properties of tissues in the proximity of the sensing element of implantable biosensors. This dissertation examines two postulated electroporation based strategies to modify tissue for enhanced performance of an implantable biosensor. In the first, the implantation protocol is modified to accommodate in vivo electroporation. In the second strategy, the the modification is applied post implantation. This post-implantation in vivo electroporation application requires that electric energy be delivered at the site of electroporation close to the biosensor while minimizing effects far from such site. A novel method, focusing electric fields, developed for this purpose is presented. A theoretical framework as well as in vitro and in vivo experiments are provided as the introduction to the method and in support of its potential as the basis of a viable technology.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Implantable biosensor"

1

Crespilho, Frank N. Nanobioelectrochemistry: From Implantable Biosensors to Green Power Generation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nawito, Moustafa. CMOS Readout Chips for Implantable Multimodal Smart Biosensors. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20347-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

International, Workshop on Wearable and Implantable Body Sensor Networks (6th 2009 Berkeley CA). Proceedings: Sixth International Workshop on Wearable and Implantable Body Sensor Networks : Berkeley, CA 3-5 June 2009. Los Alamitos, Calif: IEEE Computer Society Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International, Workshop on Wearable and Implantable Body Sensor Networks (4th 2007 Aachen Germany). 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26 - March 28, 2007, RWTH Aachen University, Germany. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

International Workshop on Wearable and Implantable Body Sensor Networks (4th 2007 Aachen, Germany). 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26 - March 28, 2007, RWTH Aachen University, Germany. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

CMOS Readout Chips for Implantable Multimodal Smart Biosensors. Springer Vieweg, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nanobioelectrochemistry From Implantable Biosensors To Green Power Generation. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1923-, Ko Wen H., Mugica Jacques, Ripart Alain, Implantable Sensors Symposium (1984 : Monaco, Monaco), and Cardiostim Conference (1984 : Monaco, Monaco), eds. Implantable sensors for closed-loop prosthetic systems. Mount Kisco, N.Y: Futura Pub. Co., 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Friedrich, Pfeiffer Ernst, and Kerner W, eds. Implantable glucose sensors: The state of the art : international symposium, Reisensburg, 1987. Stuttgart: Thieme, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), Steffen Leonhardt, Thomas Falck (Editor), and Petri Mähönen (Editor), eds. 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26-28, 2007 RWTH Aachen University, Germany (IFMBE Proceedings). Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Implantable biosensor"

1

Gifta, G., D. Gracia Nirmala Rani, Nifasath Farhana, and R. Archana. "Design of CMOS Based Biosensor for Implantable Medical Devices." In Communications in Computer and Information Science, 695–704. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5950-7_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manikandan, N., S. Muruganand, Karuppasamy, and Senthil Subramanian. "Implantable Multisensory Microelectrode Biosensor for Revealing Neuron and Brain Functions." In Springer Proceedings in Physics, 763–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Córcoles, Emma P., and Martyn G. Boutelle. "Implantable Biosensors." In Biosensors and Invasive Monitoring in Clinical Applications, 21–41. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00360-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kotanen, Christian N., Francis Gabriel Moussy, Sandro Carrara, and Anthony Guiseppi-Elie. "Implantable Amperometric Biosensors." In Encyclopedia of Biophysics, 1033–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luz, Roberto A. S., Rodrigo M. Iost, and Frank N. Crespilho. "Nanomaterials for Biosensors and Implantable Biodevices." In Nanobioelectrochemistry, 27–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29250-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gotovtsev, Pavel M., Yulia M. Parunova, Christina G. Antipova, Gulfia U. Badranova, Timofei E. Grigoriev, Daniil S. Boljshin, Maria V. Vishnevskaya, et al. "Self-Powered Implantable Biosensors: A Review of Recent Advancements and Future Perspectives." In Macro, Micro, and Nano-Biosensors, 399–410. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55490-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohta, Jun, Kiyotaka Sasagawa, and Makito Haruta. "Optical Biosensors: Implantable Multimodal Devices in Freely Moving Rodents." In Handbook of Biochips, 1–15. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-6623-9_45-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nawito, Moustafa. "Introduction." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 1–6. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nawito, Moustafa. "The SMARTImplant Project." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 7–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nawito, Moustafa. "ASIC Version 1." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 19–40. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Implantable biosensor"

1

Green, Ryan Benjamin, and Erdem Topsakal. "Biocompatible Antennas for Implantable Biosensor Systems." In 2019 International Workshop on Antenna Technology (iWAT). IEEE, 2019. http://dx.doi.org/10.1109/iwat.2019.8730633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vaddiraju, Santhisagar, Michail Kastellorizios, Allen Legassey, Diane Burgess, Faquir Jain, and Fotios Papadimitrakopoulos. "Needle-implantable, wireless biosensor for continuous glucose monitoring." In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2015. http://dx.doi.org/10.1109/bsn.2015.7299421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Jae-Joon, Peter C. Doerschuk, Saul B. Gelfand, and Sean J. O. Connor. "Statistical Signal processing for an implantable ethanol biosensor." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Han, Jae-Joon, Peter C. Doerschuk, Saul B. Gelfand, and Sean J. O. Connor. "Statistical Signal processing for an implantable ethanol biosensor." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Sullivan, Thomas D., Elizabeth Munro, Adam de la Zerda, Natesh Parashurama, Robert Teed, Zachary Walls, Ofer Levi, Sanjiv S. Gambhir, and James S. Harris, Jr. "Implantable optical biosensor for in vivo molecular imaging." In SPIE BiOS: Biomedical Optics, edited by Israel Gannot. SPIE, 2009. http://dx.doi.org/10.1117/12.811227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baj-Rossi, Camilla, Enver G. Kilinc, Sara S. Ghoreishizadeh, Daniele Casarino, Tanja Rezzonico Jost, Catherine Dehollain, Fabio Grassi, Laura Pastorino, Giovanni De Micheli, and Sandro Carrara. "Fabrication and packaging of a fully implantable biosensor array." In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2013. http://dx.doi.org/10.1109/biocas.2013.6679665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nan-Fu Chiu, Jmin-Min Wang, Lung-Jieh Yang, Cheng-Wei Liao, Chun-Hao Chen, Hsiao-Chin Chen, Shey-Shi Lu, and Chii-Wann Lin. "An Implantable Multifunctional Needle Type Biosensor with Integrated RF Capability." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Afroz, S., S. W. Thomas, G. Mumcu, and S. E. Saddow. "Implantable SiC based RF antenna biosensor for continuous glucose monitoring." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Agarwal, Abhinav, Albert Gural, Manuel Monge, Dvin Adalian, Samson Chen, Axel Scherer, and Azita Emami. "A 4μW, ADPLL-based implantable amperometric biosensor in 65nm CMOS." In 2017 Symposium on VLSI Circuits. IEEE, 2017. http://dx.doi.org/10.23919/vlsic.2017.8008566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoon, H. S., S. K. Jeong, X. Xuan, and J. Y. Park. "Semi-implantable polyimide/PTFE needle-shaped biosensor for continuous glucose monitoring." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography