Academic literature on the topic 'Implantable biosensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Implantable biosensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Implantable biosensor"
Rodrigues, Daniela, Ana I. Barbosa, Rita Rebelo, Il Keun Kwon, Rui L. Reis, and Vitor M. Correlo. "Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review." Biosensors 10, no. 7 (July 21, 2020): 79. http://dx.doi.org/10.3390/bios10070079.
Full textPuggioni, Giulia, Giammario Calia, Paola Arrigo, Andrea Bacciu, Gianfranco Bazzu, Rossana Migheli, Silvia Fancello, Pier Serra, and Gaia Rocchitta. "Low-Temperature Storage Improves the Over-Time Stability of Implantable Glucose and Lactate Biosensors." Sensors 19, no. 2 (January 21, 2019): 422. http://dx.doi.org/10.3390/s19020422.
Full textAcquaroli, Leandro N., Tim Kuchel, and Nicolas H. Voelcker. "Towards implantable porous silicon biosensors." RSC Adv. 4, no. 66 (2014): 34768–73. http://dx.doi.org/10.1039/c4ra04184d.
Full textDo Thi Hong, Diep, Duong Le Phuoc, Hoai Nguyen Thi, Serra Pier Andrea, and Rocchitta Gaia. "THE ROLE OF POLYETHYLENIMINE IN ENHANCING PERFORMANCE OF GLUTAMATE BIOSENSORS." Volume 8 Issue 3 8, no. 3 (June 2018): 36–41. http://dx.doi.org/10.34071/jmp.2018.3.6.
Full textWisniewski, Natalie, F. Moussy, and W. M. Reichert. "Characterization of implantable biosensor membrane biofouling." Fresenius' Journal of Analytical Chemistry 366, no. 6-7 (March 30, 2000): 611–21. http://dx.doi.org/10.1007/s002160051556.
Full textEdelberg, Jay M., Jason T. Jacobson, David S. Gidseg, Lilong Tang, and David J. Christini. "Enhanced myocyte-based biosensing of the blood-borne signals regulating chronotropy." Journal of Applied Physiology 92, no. 2 (February 1, 2002): 581–85. http://dx.doi.org/10.1152/japplphysiol.00672.2001.
Full textÇağlayan, Zeynep, Yağmur Demircan Yalçın, and Haluk Külah. "A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis." Micromachines 11, no. 11 (November 3, 2020): 990. http://dx.doi.org/10.3390/mi11110990.
Full textAl-Zu'bi, Muneer M., and Ananda Sanagavarapu Mohan. "Implantable Biosensor Interface Platform for Monitoring of Atherosclerosis." IEEE Sensors Letters 4, no. 2 (February 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.2968122.
Full textYu, Bazhang,. "Coil-type implantable glucose biosensor with excess enzyme loading." Frontiers in Bioscience 10, no. 1-3 (2005): 512. http://dx.doi.org/10.2741/1547.
Full textYang, Qingling, Plamen Atanasov, and Ebtisam Wilkins. "A novel amperometric transducer design for needle-type implantable biosensor applications." Electroanalysis 9, no. 16 (November 1997): 1252–56. http://dx.doi.org/10.1002/elan.1140091607.
Full textDissertations / Theses on the topic "Implantable biosensor"
Steinberg, Matthew David. "An implantable glucose biosensor." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625092.
Full textJaffari, Samarah A. "A potentially implantable amperometric glucose biosensor." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282439.
Full textPierce, Mary E. "Engineering a fiber-optic implantable cardiovascular biosensor /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1422954.
Full textJu, Young Min. "A Novel Biostable 3D Porous Collagen Scaffold for Implantable Biosensor." Scholar Commons, 2007. https://scholarcommons.usf.edu/etd/323.
Full textJu, Young Min. "A novel bio-stable 3D porous collagen scaffold for implantable biosensor." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002354.
Full textKatic, Janko. "Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206588.
Full textEnergiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt. Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten. Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW.
QC 20170508
Mi-SoC
Govindarajan, Sridhar. "Development of an implantable biosensor suitable for continuous monitoring of glutamate in the brain." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492093.
Full textVasylieva, Natalia. "Implantable microelectrode biosensors for neurochemical monitoring of brain functioning." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00861119.
Full textCordero, Álvarez Rafael. "Subcutaneous Monitoring of Cardiac Activity for Chronically Implanted Medical Devices." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS020.
Full textThe aim of this doctoral thesis was the development of sensors and algorithms for the improved monitoring of cardiac activity in the subcutaneous implantable cardioverter-defibrillator (SICD). More precisely, to improve the detection specificity of dangerous tachyarrhythmia such as ventricular tachycardia (VT) and ventricular fibrillation (VF). Two independent VT/VF detection schemes were developed for this: one electrophysiological in nature, and the other hemodynamic. The electrophysiological sensing scheme relied on a special ECG that was recorded along a short dipole located above the lower left pectoralis major. This short dipole maximised R/T ratio and signal-to-noise ratio in a total of 9 healthy volunteers. In theory, it will reduce the risk of false positive VT/VF detections simply by consequence of the dipole size, location, and orientation and independently of any further signal processing methods. The hemodynamic sensing scheme relied on cardiac vibrations recorded from two tri-axial accelerometer prototype sensors. These subcutaneous cardiac vibrations were characterised, physiologically validated, and optimised via their filtering along specific bandwidths and projection along a patient specific reference frame. The world’s first independent cardiac vibration VF detection algorithm was developed operating on these optimised signals. The same accelerometer prototypes were also shown to be able to record respiratory accelerations and detect apnoea. A final subcutaneous lead prototype was developed capable of recording the short dipole ECG, cardiac vibrations, and respiratory accelerations. It consisted of three electrodes, a bi-axial accelerometer, and industry-standard device connectors. The prototype lead was implanted in a fourth and final animal
Rey, Jose. "Guiding Electric Fields for Electroporation Applications." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3308.
Full textBooks on the topic "Implantable biosensor"
Crespilho, Frank N. Nanobioelectrochemistry: From Implantable Biosensors to Green Power Generation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textNawito, Moustafa. CMOS Readout Chips for Implantable Multimodal Smart Biosensors. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20347-4.
Full textInternational, Workshop on Wearable and Implantable Body Sensor Networks (6th 2009 Berkeley CA). Proceedings: Sixth International Workshop on Wearable and Implantable Body Sensor Networks : Berkeley, CA 3-5 June 2009. Los Alamitos, Calif: IEEE Computer Society Press, 2009.
Find full textInternational, Workshop on Wearable and Implantable Body Sensor Networks (4th 2007 Aachen Germany). 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26 - March 28, 2007, RWTH Aachen University, Germany. Berlin: Springer, 2007.
Find full textInternational Workshop on Wearable and Implantable Body Sensor Networks (4th 2007 Aachen, Germany). 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26 - March 28, 2007, RWTH Aachen University, Germany. Berlin: Springer, 2007.
Find full textCMOS Readout Chips for Implantable Multimodal Smart Biosensors. Springer Vieweg, 2017.
Find full textNanobioelectrochemistry From Implantable Biosensors To Green Power Generation. Springer, 2012.
Find full text1923-, Ko Wen H., Mugica Jacques, Ripart Alain, Implantable Sensors Symposium (1984 : Monaco, Monaco), and Cardiostim Conference (1984 : Monaco, Monaco), eds. Implantable sensors for closed-loop prosthetic systems. Mount Kisco, N.Y: Futura Pub. Co., 1985.
Find full textFriedrich, Pfeiffer Ernst, and Kerner W, eds. Implantable glucose sensors: The state of the art : international symposium, Reisensburg, 1987. Stuttgart: Thieme, 1988.
Find full text(Editor), Steffen Leonhardt, Thomas Falck (Editor), and Petri Mähönen (Editor), eds. 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007): March 26-28, 2007 RWTH Aachen University, Germany (IFMBE Proceedings). Springer, 2007.
Find full textBook chapters on the topic "Implantable biosensor"
Gifta, G., D. Gracia Nirmala Rani, Nifasath Farhana, and R. Archana. "Design of CMOS Based Biosensor for Implantable Medical Devices." In Communications in Computer and Information Science, 695–704. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5950-7_57.
Full textManikandan, N., S. Muruganand, Karuppasamy, and Senthil Subramanian. "Implantable Multisensory Microelectrode Biosensor for Revealing Neuron and Brain Functions." In Springer Proceedings in Physics, 763–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_115.
Full textCórcoles, Emma P., and Martyn G. Boutelle. "Implantable Biosensors." In Biosensors and Invasive Monitoring in Clinical Applications, 21–41. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00360-3_5.
Full textKotanen, Christian N., Francis Gabriel Moussy, Sandro Carrara, and Anthony Guiseppi-Elie. "Implantable Amperometric Biosensors." In Encyclopedia of Biophysics, 1033–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_822.
Full textLuz, Roberto A. S., Rodrigo M. Iost, and Frank N. Crespilho. "Nanomaterials for Biosensors and Implantable Biodevices." In Nanobioelectrochemistry, 27–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29250-7_2.
Full textGotovtsev, Pavel M., Yulia M. Parunova, Christina G. Antipova, Gulfia U. Badranova, Timofei E. Grigoriev, Daniil S. Boljshin, Maria V. Vishnevskaya, et al. "Self-Powered Implantable Biosensors: A Review of Recent Advancements and Future Perspectives." In Macro, Micro, and Nano-Biosensors, 399–410. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55490-3_20.
Full textOhta, Jun, Kiyotaka Sasagawa, and Makito Haruta. "Optical Biosensors: Implantable Multimodal Devices in Freely Moving Rodents." In Handbook of Biochips, 1–15. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-6623-9_45-1.
Full textNawito, Moustafa. "Introduction." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 1–6. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_1.
Full textNawito, Moustafa. "The SMARTImplant Project." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 7–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_2.
Full textNawito, Moustafa. "ASIC Version 1." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 19–40. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_3.
Full textConference papers on the topic "Implantable biosensor"
Green, Ryan Benjamin, and Erdem Topsakal. "Biocompatible Antennas for Implantable Biosensor Systems." In 2019 International Workshop on Antenna Technology (iWAT). IEEE, 2019. http://dx.doi.org/10.1109/iwat.2019.8730633.
Full textVaddiraju, Santhisagar, Michail Kastellorizios, Allen Legassey, Diane Burgess, Faquir Jain, and Fotios Papadimitrakopoulos. "Needle-implantable, wireless biosensor for continuous glucose monitoring." In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2015. http://dx.doi.org/10.1109/bsn.2015.7299421.
Full textHan, Jae-Joon, Peter C. Doerschuk, Saul B. Gelfand, and Sean J. O. Connor. "Statistical Signal processing for an implantable ethanol biosensor." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398253.
Full textHan, Jae-Joon, Peter C. Doerschuk, Saul B. Gelfand, and Sean J. O. Connor. "Statistical Signal processing for an implantable ethanol biosensor." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259572.
Full textO'Sullivan, Thomas D., Elizabeth Munro, Adam de la Zerda, Natesh Parashurama, Robert Teed, Zachary Walls, Ofer Levi, Sanjiv S. Gambhir, and James S. Harris, Jr. "Implantable optical biosensor for in vivo molecular imaging." In SPIE BiOS: Biomedical Optics, edited by Israel Gannot. SPIE, 2009. http://dx.doi.org/10.1117/12.811227.
Full textBaj-Rossi, Camilla, Enver G. Kilinc, Sara S. Ghoreishizadeh, Daniele Casarino, Tanja Rezzonico Jost, Catherine Dehollain, Fabio Grassi, Laura Pastorino, Giovanni De Micheli, and Sandro Carrara. "Fabrication and packaging of a fully implantable biosensor array." In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2013. http://dx.doi.org/10.1109/biocas.2013.6679665.
Full textNan-Fu Chiu, Jmin-Min Wang, Lung-Jieh Yang, Cheng-Wei Liao, Chun-Hao Chen, Hsiao-Chin Chen, Shey-Shi Lu, and Chii-Wann Lin. "An Implantable Multifunctional Needle Type Biosensor with Integrated RF Capability." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616830.
Full textAfroz, S., S. W. Thomas, G. Mumcu, and S. E. Saddow. "Implantable SiC based RF antenna biosensor for continuous glucose monitoring." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688379.
Full textAgarwal, Abhinav, Albert Gural, Manuel Monge, Dvin Adalian, Samson Chen, Axel Scherer, and Azita Emami. "A 4μW, ADPLL-based implantable amperometric biosensor in 65nm CMOS." In 2017 Symposium on VLSI Circuits. IEEE, 2017. http://dx.doi.org/10.23919/vlsic.2017.8008566.
Full textYoon, H. S., S. K. Jeong, X. Xuan, and J. Y. Park. "Semi-implantable polyimide/PTFE needle-shaped biosensor for continuous glucose monitoring." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994397.
Full text