Academic literature on the topic 'Implantation damage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Implantation damage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Implantation damage":

1

Kieslich, A., H. Doleschel, J. P. Reithmaier, A. Forchel, and N. G. Stoffel. "Implantation induced damage in." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 99, no. 1-4 (May 1995): 594–97. http://dx.doi.org/10.1016/0168-583x(95)00323-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pernot, Julien, Jean Marie Bluet, Jean Camassel, and Lea Di Cioccio. "Infrared Investigation of Implantation Damage and Implantation Damage Annealing in 4H-SiC." Materials Science Forum 353-356 (January 2001): 385–88. http://dx.doi.org/10.4028/www.scientific.net/msf.353-356.385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bai, Minyu, Yulong Zhao, Binbin Jiao, Lingjian Zhu, Guodong Zhang, and Lei Wang. "Research on ion implantation in MEMS device fabrication by theory, simulation and experiments." International Journal of Modern Physics B 32, no. 14 (June 5, 2018): 1850170. http://dx.doi.org/10.1142/s0217979218501709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.
4

Schaake, H. F. "Ion implantation damage in Hg0.8Cd0.2Te." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 4 (July 1986): 2174–76. http://dx.doi.org/10.1116/1.574050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parikh, N. R., D. A. Thompson, and G. J. C. Carpenter. "Ion implantation damage in CdS." Radiation Effects 98, no. 1-4 (September 1986): 289–300. http://dx.doi.org/10.1080/00337578608206119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leclerc, Stephanie, Marie France Beaufort, Valerie Audurier, Alain Déclemy, and Jean François Barbot. "Helium Implantation Damage in SiC." Solid State Phenomena 108-109 (December 2005): 709–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Single crystals SiC were implanted with 50 keV helium ions at room temperature and fluences in the range 1x1016 -1x1017 cm-2. The helium implantation induced swelling was studied through the measurement of the step height. The damage was studied by using X-ray diffraction measurements and the transmission electron microscopy observations. Degradation of mechanical properties is found after helium implantation.
7

Swain, Santosh Kumar. "Vertigo following cochlear implantation: a review." International Journal of Research in Medical Sciences 10, no. 2 (January 29, 2022): 572. http://dx.doi.org/10.18203/2320-6012.ijrms20220310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cochlear implantation may cause a detrimental effect on vestibular function and residual hearing. A significant number of patients with a cochlear implant present with vertigo. There are several mechanisms for dizziness following cochlear implantations. The causes may be surgical trauma, disruption of normal cochlear physiology, or ensuing endolymphatic hydrops. Vibratory trauma affecting the cochlea during cochleostomy plays a vital role in causing paroxysmal vertigo in patients with a cochlear implant. In addition, the vibrations affecting the cochlea are enough to dislodge otoconia particles. During cochlear implantation, it is necessary to insert an electrode array into the cochlea and thus the chance of damage to cochlear and function may happen. Dizziness or vertigo may develop after cochlear implantation. It usually occurs due to vestibular hypofunction. Vertigo following cochlear implantation has not frequently been documented in the literature previously. However, the increasing number of cochlear implantations in the current scenario is showing different postoperative complications like vestibular symptoms among patients with an implant. The vestibular symptoms following cochlear implantation range from a gradual sense of mild unsteadiness or lightheadedness to brief attacks of whirling vertigo. Vertigo following cochlear implantations affects the quality of life although vestibular therapy is often helpful to manage this condition. The article aims to provide a comprehensive review of vertigo following cochlear implantation.
8

Tyagi, A. K. "Helium Implantation Damage in Metallic Glasses." Key Engineering Materials 13-15 (January 1987): 715–25. http://dx.doi.org/10.4028/www.scientific.net/kem.13-15.715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keinonen, J., M. Hautala, E. Rauhala, and M. Erola. "Hydrogen-implantation-induced damage in silicon." Physical Review B 36, no. 2 (July 15, 1987): 1344–47. http://dx.doi.org/10.1103/physrevb.36.1344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Usov, I. O., D. Koleske, and K. E. Sickafus. "Ion implantation damage recovery in GaN." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267, no. 17 (September 2009): 2962–64. http://dx.doi.org/10.1016/j.nimb.2009.06.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Implantation damage":

1

Jublot-Leclerc, Stéphanie. "Damage induced by helium implantation in silicon carbide." Poitiers, 2007. http://www.theses.fr/2007POIT2293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’endommagement induit par implantation d’hélium dans le carbure de silicium a été étudié par DRX et TEM. La simulation des spectres DRX a permis de tracer les profils de déformation. Les implantations ont été réalisées à températures ambiante (TA) et élevées sur une large gamme de fluences. Les expériences menées à TA ont montré que l’endommagement résulte de mécanismes liés à la fois aux défauts ponctuels et à des complexes hélium-lacunes. Des seuils ont été estimés pour la formation de couches de bulles et de matériau amorphe. Contrairement à ce qui est admis, la densité d’énergie nucléaire critique pour observer la transition amorphe dépend de l’énergie des ions incidents. Pour des températures d’implantation élevées, deux régimes d’endommagement sont distingués selon la fluence. Aux faibles fluences, un recuit dynamique proportionnel à la concentration en défauts est observé. Aux fortes fluences, une migration des défauts de type interstitiel vers la zone de fort endommagement a été mise en évidence. Celle-ci conduit à une saturation de la déformation en surface du matériau. Enfin, des recuits ont été réalisés sur les échantillons implantés à TA. Différents stades de recuit des défauts ponctuels ont été mis en évidence et associés à des énergies d’activation. Pendant le recuit, une forte évolution de la microstructure a été constatée dans la zone de fort endommagement. Pour des fluences évitant l’amorphisation, des amas de bulles en surpression se forment à partir de cavités lenticulaires. Ces bulles expulsent des boucles de dislocations créant de la déformation plastique dans le matériau
In this work, the damage induced by helium implantation in silicon carbide has been studied through XRD and TEM experiments. Combining both XRD experiments and simulations has led us to obtain accurate strain profiles. Implantations have been performed from RT to elevated temperatures to a wide range of fluences. Implantation at RT has been shown to result in a complex picture with mechanisms related to both point defects and helium-vacancy complexes. In particular, helium-vacancy complexes have been seen to strongly influence the strain profile for a concentration of helium exceeding 0. 5%. Thresholds for the formation of layers of bubbles and amorphous material have been estimated. This latter depends on the energy of incident ions contrary to what is currently acknowledged. Experiments at elevated temperatures have pointed out two regimes in the damage production as a function of fluence. In the low fluence regime, dynamic annealing occurs in proportion to the defect density over the whole implanted zone. In the high fluence regime, in addition to the dynamic annealing, a migration of interstitial-type defects towards a highly damaged zone has been detected. Both phenomenon lead to a saturation in the near surface strain. Finally, annealing has been performed on the samples implanted at RT. Annealing stages of point defects have been distinguished and related to activation energies. During annealing, strong evolution of the microstructure has been seen to take place in the highly damaged zone. At medium fluences, platelets are formed that collapse into clusters of overpressurized bubbles. These latter induce loop punching which in turn, induces plastic deformation
2

Strickland, Keith R. "Study of ion implantation damage in silicon wafers using phonons." Thesis, Lancaster University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Chennan. "Damage accumulation and recovery in Xe implanted 4H-SiC." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2251/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le carbure de silicium (SiC) est un matériau qui est considéré comme un semi-conducteur à large bande interdite ou une céramique suivant ses applications en microélectronique ou comme matériau nucléaire. Dans ces deux domaines d'application les défauts générés par l'implantation/irradiation d'ions (dopage, matériau de structure) doivent être contrôlés. Ce travail est une étude des défauts générés par l'implantation de gaz rares suivant les conditions d'implantation (fluence et température). La déformation élastique a plus particulièrement été étudiée dans le cas d'implantation de xénon à des températures pour lesquelles la recombinaison dynamique empêche la transition amorphe. Un modèle phénoménologique basé sur le recouvrement des cascades a été proposé pour comprendre l'évolution de la déformation maximale avec la dose. Des observations complémentaires en particulier par microscopie électronique à transition nous ont permis de préciser la nature des défauts créés et d'étudier leur évolution sous recuit. La formation de cavités a été observée pour des conditions sévères d'implantation/recuit ; ces cavités sont de nature différente (vide ou pleine) suivant la répartition du xénon. Cette étude est également reliée aux propriétés de gonflement sous irradiation, gonflement qui doit être anticipé dans les domaines d'application du SiC
Silicon carbide is a material that can be considered as a wide band gap semiconductor or as a ceramic according to its applications in microelectronics and in nuclear energy system (fission and fusion). In both fields of application defects or damage induced by ion implantation/ irradiation (doping, material structure) should be controlled. This work is a study of defects induced by noble gas implantation according to the implantation conditions (fluence and temperature). The elastic strain buildup, particularly in the case of xenon implantation, has been studied at elevated temperatures for which the dynamic recombination prevents the amorphization transition. A phenomenological model based on cascade recovery has been proposed to understand the strain evolution with increasing dose and for different noble gases. In addition, with the help of transmission electron microscopy the evolution of defects under subsequent annealing was studied. The formation of nanocavities was observed under severe implantation/annealing conditions. These cavities are of different nature (full of gas or empty) according to the xenon and damage distribution. This study is also linked to swelling properties under irradiation that should be projected in the SiC application fields
4

Spooner, Marc. "Ion implantation damage in SiO¦2 studied with positron annihilation spectroscopy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/MQ30770.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Shenjun. "Study of silicon damage caused by ultra-low energy boron implantation." Thesis, University of Salford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roth, Elaine Grannan. "Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5248/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new understanding of the damage formation mechanisms in Si is developed and investigated over an extended range of ion energy, dose, and irradiation temperature. A simple model for dealing with ion-induced damage is proposed, which is shown to be applicable over the range of implantation conditions. In particular the concept of defect "excesses" will be discussed. An excess exists in the lattice when there is a local surplus of one particular type of defect, such as an interstitial, over its complimentary defect (i.e., a vacancy). Mechanisms for producing such excesses by implantation will be discussed. The basis of this model specifies that accumulation of stable lattice damage during implantation depends upon the excess defects and not the total number of defects. The excess defect model is validated by fundamental damage studies involving ion implantation over a range of conditions. Confirmation of the model is provided by comparing damage profiles after implantation with computer simulation results. It will be shown that transport of ions in matter (TRIM) can be used effectively to model the ion-induced damage profile, i.e. excess defect distributions, by a simple subtraction process in which the spatially correlated defects are removed, thereby simulating recombination. Classic defect studies illuminate defect interactions from concomitant implantation of high- and medium-energy Si+-self ions. Also, the predictive quality of the excess defect model was tested by applying the model to develop several experiments to engineer excess defect concentrations to substantially change the nature and distribution of the defects. Not only are the excess defects shown to play a dominant role in defect-related processing issues, but their manipulation is demonstrated to be a powerful tool in tailoring the implantation process to achieve design goals. Pre-amorphization and dual implantation of different energetic ions are two primary investigative tools used in this work. Various analyses, including XTEM, RBS/channeling, PAS, and SIMS, provided experimental verification of the excess defect model disseminated within this dissertation.
7

Furkert, Suzanne. "An investigation of electron irradiation and implantation damage centres in silicon carbide by microscopic photoluminescence (PL) spectroscopy." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kucheyev, Sergei Olegovich, and kucheyev1@llnl gov. "Ion-beam processes in group-III nitrides." The Australian National University. Research School of Physical Sciences and Engineering, 2002. http://thesis.anu.edu.au./public/adt-ANU20030211.170915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Group-III-nitride semiconductors (GaN, InGaN, and AlGaN) are important for the fabrication of a range of optoelectronic devices (such as blue-green light emitting diodes, laser diodes, and UV detectors) as well as devices for high-temperature/high-power electronics. In the fabrication of these devices, ion bombardment represents a very attractive technological tool. However, a successful application of ion implantation depends on an understanding of the effects of radiation damage. Hence, this thesis explores a number of fundamental aspects of radiation effects in wurtzite III-nitrides. Emphasis is given to an understanding of (i) the evolution of defect structures in III-nitrides during ion irradiation and (ii) the influence of ion bombardment on structural, mechanical, optical, and electrical properties of these materials. ¶ Structural characteristics of GaN bombarded with keV ions are studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). Results show that strong dynamic annealing leads to a complex dependence of the damage buildup on ion species with preferential surface disordering. Such preferential surface disordering is due to the formation of surface amorphous layers, attributed to the trapping of mobile point defects by the GaN surface. Planar defects are formed for a wide range of implant conditions during bombardment. For some irradiation regimes, bulk disorder saturates below the amorphization level, and, with increasing ion dose, amorphization proceeds layer-by-layer only from the GaN surface. In the case of light ions, chemical effects of implanted species can strongly affect damage buildup. For heavier ions, an increase in the density of collision cascades strongly increases the level of stable implantation-produced lattice disorder. Physical mechanisms of surface and bulk amorphization and various defect interaction processes in GaN are discussed. ¶ Structural studies by RBS/C, TEM, and atomic force microscopy (AFM) reveal anomalous swelling of implanted regions as a result of the formation of a porous structure of amorphous GaN. Results suggest that such a porous structure consists of N$_{2}$ gas bubbles embedded into a highly N-deficient amorphous GaN matrix. The evolution of the porous structure appears to be a result of stoichiometric imbalance, where N- and Ga-rich regions are produced by ion bombardment. Prior to amorphization, ion bombardment does not produce a porous structure due to efficient dynamic annealing in the crystalline phase. ¶ The influence of In and Al content on the accumulation of structural damage in InGaN and AlGaN under heavy-ion bombardment is studied by RBS/C and TEM. Results show that an increase in In concentration strongly suppresses dynamic annealing processes, while an increase in Al content dramatically enhances dynamic annealing. Lattice amorphization in AlN is not observed even for very large doses of keV heavy ions at -196 C. In contrast to the case of GaN, no preferential surface disordering is observed in InGaN, AlGaN, and AlN. Similar implantation-produced defect structures are revealed by TEM in GaN, InGaN, AlGaN, and AlN. ¶ The deformation behavior of GaN modified by ion bombardment is studied by spherical nanoindentation. Results show that implantation disorder significantly changes the mechanical properties of GaN. In particular, amorphous GaN exhibits plastic deformation even for very low loads with dramatically reduced values of hardness and Young's modulus compared to the values of as-grown GaN. Moreover, implantation-produced defects in crystalline GaN suppress the plastic component of deformation. ¶ The influence of ion-beam-produced lattice defects as well as a range of implanted species on the luminescence properties of GaN is studied by cathodoluminescence (CL). Results indicate that intrinsic lattice defects mainly act as nonradiative recombination centers and do not give rise to yellow luminescence (YL). Even relatively low dose keV light-ion bombardment results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer, due to a reduction in the extent of light absorption within the implanted layer. Experimental data also shows that H, C, and O are involved in the formation of YL. The chemical origin of YL is discussed based on experimental data. ¶ Finally, the evolution of sheet resistance of GaN epilayers irradiated with MeV light ions is studied {\it in-situ}. Results show that the threshold dose of electrical isolation linearly depends on the original free electron concentration and is inversely proportional to the number of atomic displacements produced by the ion beam. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 C. Results also show that both implantation temperature and ion beam flux can affect the process of electrical isolation. This behavior is consistent with significant dynamic annealing, which suggests a scenario where the centers responsible for electrical isolation are defect clusters and/or antisite-related defects. A qualitative model is proposed to explain temperature and flux effects. ¶ The work presented in this thesis has resulted in the identification and understanding of a number of both fundamental and technologically important ion-beam processes in III-nitrides. Most of the phenomena investigated are related to the nature and effects of implantation damage, such as lattice amorphization, formation of planar defects, preferential surface disordering, porosity, decomposition, and quenching of CL. These effects are often technologically undesirable, and the work of this thesis has indicated, in some cases, how such effects can be minimized or controlled. However, the thesis has also investigated one example where irradiation-produced defects can be successfully applied for a technological benefit, namely for electrical isolation of GaN-based devices. Finally, results of this thesis will clearly stimulate further research both to probe some of the mechanisms for unusual ion-induced effects and also to develop processes to avoid or repair unwanted lattice damage produced by ion bombardment.
9

Abdul-Jawad, Altisent Omar. "Caracterización del daño neurológico asociado a la TAVI y estrategias terapéuticas para su prevención." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/456574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Actualmente la implantación de prótesis aórtica transcatéter (TAVI) representa la principal opción terapéutica para pacientes con estenosis aórtica severa y alto riesgo quirúrgico. La ampliación de las indicaciones TAVI a una población de menor riesgo está limitada por la relativa alta incidencia de eventos cerebrovasculares. El daño neurológico relacionado con la TAVI se ha clasificado en distintos niveles: clínico (ictus y accidente cerebral transitorio); subclínico (infartos silentes detectados por resonancia magnética con ponderación de difusión [DWI]); y cognitivo. Estudios con DWI realizados en pacientes con un perfil de riesgo elevado han mostrado una alta incidencia de daño cerebral subclínico tras la TAVI. No obstante, la repercusión clínica en forma de variaciones del estado cognitivo ha mostrado resultados poco concluyentes. Tampoco conocemos el riesgo de daño subclínico ni las consecuencias cognitivas en una población TAVI con un perfil de riesgo menor. Existen dos principales estrategias para prevenir el daño neurológico asociado a la TAVI: farmacológica (agentes antitrombóticos) y mecánica (dispositivos de protección embólica). Las guías de práctica clínica recomiendan una terapia antiplaquetar (TAP) post-TAVI para reducir el riesgo de ictus. No obstante, no hay datos sobre la eficacia y seguridad de esta recomendación en pacientes que se encuentren en tratamiento concomitante con antagonistas de la vitamina K (AVK) por fibrilación auricular (FA). El primer objetivo (estudio 1) fue comparar el grado de daño neurológico subclínico (mediante DWI) y las variaciones del estado cognitivo entre la TAVI y el recambio valvular aórtico quirúrgico (RVA) en una población considerada de riesgo quirúrgico intermedio. El segundo objetivo fue examinar el riesgo de eventos isquémicos y hemorrágicos asociados a dos estrategias antitrombóticas distintas en pacientes con FA sometidos a TAVI. Los dos estudios presentados son observacionales. El estudio 1 se realizó en el Hospital Vall Hebron. Cuarenta y seis pacientes sometidos a TAVI (78,8±8.3 años, STS score 4,4±1.7) se compararon con 37 pacientes sometidos a RVA (78,9±6,2 años, STS score 4,7±1,7). La DWI se realizó durante los primeros 15 días tras la intervención y la valoración cognitiva a nivel basal y a los 3 meses tras la intervención. No se observaron diferencias en la incidencia de ictus (2,2% en TAVI vs. 5,4% en RVA, p=0.58), ni en la incidencia de lesiones cerebrales subclínicas detectadas por DWI (45% vs. 40,7%, OR-ajustada 0,95 [0,25-3,65], p=0,94). La edad fue un predictor de nuevas lesiones (p=0,01), y el tratamiento con antagonistas de la vitamina K (AVK) tuvo un efecto protector (p=0,037). No se observaron cambios significativos en las puntuaciones de los test cognitivos tras la intervención. El estudio 2 incluyó a 621 pacientes con FA sometidos a TAVI. Se compararon dos estrategias antitrombóticas utilizadas en mundo real: monoterapia (MT) con el uso único de AVK (n=101) vs. terapia multi-antitrombótica (MAT) con el uso de TAP más AVK (n=520). Durante un seguimiento medio de 13 meses no se observaron diferencias en la incidencia de ictus (p=0.67), eventos cardiovasculares mayores (combinado de ictus, infarto o muerte cardiaca, p=0.33), o muerte (p=0.76). No obstante sí se documentó un mayor riesgo de hemorragia mayor o amenazante en el grupo MAT (HR 1,85 [1,05-3,28], p=0,04). El estudio 1 mostró que en una población de riesgo intermedio el daño neurológico tras la TAVI fue similar que tras el RVA. Aunque la incidencia de daño subclínico era elevada (tras la TAVI o RVA) su impacto clínico no pareció relevante. En el estudio 2 se observó que añadir una TAP a pacientes que están en tratamiento con AVK por FA y son sometidos a TAVI no aportó ningún beneficio y en cambio sí aumentó el riesgo de hemorragia.
Transcatheter aortic valve implantation (TAVI) is now the principal therapeutic option in patients with severe aortic stenosis deemed at high surgical risk. Implementing TAVI in a lower risk profile population could be limited by relatively high incidence of neurological damage related with the procedure. Neurological damage has been classified at different levels: clinical (stroke or transient ischemic attack), subclinical (silent embolic infarcts after procedure demonstrated by Diffusion Weighted resonance Imaging [DWI]), and cognitive. DWI studies performed in high risk patients have demonstrated the ubiquitous presence of subclinical damage following TAVI. However its effects on cognition showed inconclusive results. To date, the risk of subclinical damage and cognitive fluctuations following TAVI in a population deemed at lower risk is unknown. There are currently two main strategies to prevent neurological damage related with TAVI: pharmacological (antithrombotic agents) and mechanical (embolic protection devices). Guidelines recommend antiplatelet therapy (APT) post-TAVR to reduce the risk of stroke. However, data on the efficacy and safety of this recommendation in the setting of a concomitant indication for oral anticoagulation (due to atrial fibrillation [AF]) are scare. The first objective (study 1) was to compare the degree of neurological damage using DWI and cognitive testing between TAVI and surgical aortic valve implantation (SAVR) in patients deemed at intermediate surgical risk. The second objective (study 2) was to examine the risk of ischemic events and bleeding episodes associated with differing antithrombotic strategies in patients undergoing TAVI with concomitant AF. The two studies presented were observational. Study #1 was conducted in Vall Hebron Hospital. Forty-six patients undergoing TAVI (78.8±8.3 years, STS score 4.4±1.7) and 37 patients undergoing SAVR (78.9±6.2 years, STS score 4.7±1.7) were compared. DWI was performed within the first 15 days post-procedure. A cognitive assessment was performed at baseline and at 3 months follow-up. TAVI and SAVR groups were comparable in terms of baseline characteristics. There were no differences in incidence of stroke (2.2% in TAVR vs. 5.4% in SAVR, p=0.58), neither in the rate of acute ischemic cerebral lesions detected by DWI (45% vs. 40.7%, adjusted OR 0.95 [0.25-3.65], p=0.94). An older age was a predictor of new lesions (p=0.01), and therapy with vitamin K antagonist (VKA) had a protective effect (p=0.037). Overall no significant changes were observed in global cognitive scores post-intervention. Study #2 was a real world multicenter evaluation comprising 621 patients with AF undergoing TAVI. Two groups were compared: mono-therapy (MT) group (with the use of VKA alone, n=101) vs. multi-antithrombotic (MAT) group (with the use of VKA plus APT, as recommended by guidelines, n=520). During a follow-up of 13 months there were no differences between groups in the rates of stroke (MT 5% vs. MAT 5.2%, HR 1.25 [0.45-3.48], p=0.67), major cardiovascular endpoint (combined of stroke, myocardial infarction or cardiovascular death, p=0.33) or death (p=0.76), however a higher risk of major or life-threatening bleeding was found in the MAT group (HR 1.85 [1.05-3.28], p=0.04). Study #1 found similar rate of cerebral damage following TAVI and SAVR in patients at intermediate risk. Although acute lesions occurred frequently in both strategies, their cognitive impact was not clinically relevant. Study #2 found that in TAVI recipients prescribed VKA therapy for AF, concomitant APT use appears not to reduce the incidence of stroke, major adverse cardiovascular events, or death, while increasing the risk of major or life-threatening bleeding. Though only observational, the important lessons to be drawn from this thesis are that under a neurological perspective implementing TAVI in an intermediate risk populations appears reasonable; and that the currently recommendation of prescribing APT for patients with AF who are already on long-term anticoagulation does not confer any benefit while potentially being harmful.
10

Bultena, Sandra Lyn. "An in-depth study of high energy oxygen implantation into ion-damaged silicon." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0012/NQ35573.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Implantation damage":

1

Albers, John. Results of the Monte Carlo calculation of one-and two-dimensional distributions of particles and damage: Ion implanteddopants in silicon. Washington, D.C: National Bureau of Standards, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albers, John. Results of the Monte Carlo calculation of one- and two-dimensional distributions of particles and damage: Ion implanted dopants in silicon. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, Susan Weixi. A study of ion implantation damage and annealing of silicon utilizing differential reflectometry. 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giacca, Mauro, and Borja Ibáñez. Advanced therapies to treat cardiovascular diseases: controversies and perspectives. Edited by José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso, and Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
There is a pressing need to develop novel therapies for myocardial infarction and heart failure, two conditions that affect over 20% of the world population. Despite important advances in achieving revascularization of the ischaemic myocardium and the usefulness of devices in assisting failing hearts, therapy for these conditions remains poor. The final extent of myocardial tissue loss after infarction is a major determinant of post-infarction mortality due to heart failure. In this chapter we review the current strategies aimed at counteracting injury due to acute myocardial ischaemia–reperfusion and the experimental approaches to achieve cardiac and vascular regeneration once damage has occurred. We critically discuss the possibility of inducing tissue restoration by gene transfer or exogenous cell implantation, and report on the exciting possibility of stimulating the endogenous capacity of cardiac regeneration using growth factors and small regulatory RNAs.
5

Stocchetti, Nino, and Andrew I. R. Maas. Causes and management of intracranial hypertension. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Intracranial hypertension may damage the brain in two ways—it causes tissue distortion and herniation, and reduces cerebral perfusion. The many different pathologies that can result in intracranial hypertension include subarachnoid haemorrhage, spontaneous intra-parenchymal haemorrhage, malignant cerebral hemispheric infarction, and acute hydrocephalus. The pathophysiology and specific treatment of intracranial hypertension may be different and depend on aetiology. In patients with subarachnoid haemorrhage a specific focus is on treating secondary hydrocephalus and maintaining adequate cerebral perfusion pressure (CPP). Indications for surgery in patients with intracranial hypertension due to intracerebral haemorrhage (ICH) are not only related to the mass effect, but also to remove the toxic effect of extravasated blood on brain tissue. Decompressive surgery should be considered for patients with a malignant hemispheric infarction, but in order to benefit the patient this surgery should be performed within 48 hours of the onset of the stroke. Hydrocephalus may result from obstruction of cerebrospinal fluid (CSF) flow, from impaired CSF re-absorption and occasionally from overproduction of CSF. Emergency management of acute hydrocephalus can be accomplished by external ventricular drainage of CSF. More definitive treatment may be either by third ventriculostomy or implantation of a CSF shunt diverting CSF to the abdominal cavity (a ventriculoperitoneal shunt) or to the right atrium of the heart (ventriculo-atrial shunt).

Book chapters on the topic "Implantation damage":

1

Rimini, Emanuele. "Radiation Damage." In Ion Implantation: Basics to Device Fabrication, 131–72. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2259-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leclerc, Stephanie, Marie France Beaufort, Valerie Audurier, Alain Déclemy, and Jean François Barbot. "Helium Implantation Damage in SiC." In Solid State Phenomena, 709–12. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keinonen, J., M. Hautala, E. Rauhala, V. Karttunen, A. Kuronen, J. Räisänen, J. Lahtinen, A. Vehanen, E. Punkka, and P. Hautojärvi. "H-Implantation-Induced Damage in Si." In Nuclear Physics Applications on Materials Science, 439–40. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2800-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bougherara, Habiba, Václav Klika, František Maršík, Ivo A. Mařík, and L'Hocine Yahia. "A Novel Approach for Bone Remodeling After Prosthetic Implantation." In Damage and Fracture Mechanics, 553–65. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2669-9_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsumori, T., M. Uchida, H. Yoshinaga, J. Kawai, T. Izumi, and F. Uehara. "Photoacoustic Characterization of Ion-Implantation Damage in Silicon." In Photoacoustic and Photothermal Phenomena III, 357–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47269-8_91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wigmore, J. K., K. R. Strickland, S. C. Edwards, and R. A. Collins. "Scattering of High-Frequency Phonons by Implantation Damage in Silicon." In Springer Series in Solid-State Sciences, 279–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ma, Yutian, Junbiao Liu, Han Li, Long Cheng, Ying Zhang, and Kaigui Zhu. "Effect of Grain Orientation on Surface Damage of Niobium Doped Tungsten with Helium Implantation." In Springer Proceedings in Energy, 115–25. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0158-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simionescu, A., and G. Hobler. "Two Dimensional Monte Carlo Simulation of Ion Implantation in Crystalline Silicon Considering Damage Formation." In Simulation of Semiconductor Devices and Processes, 361–64. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-6657-4_89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peripolli, S., Marie France Beaufort, David Babonneau, Sophie Rousselet, P. F. P. Fichtner, L. Amaral, Erwan Oliviero, Jean François Barbot, and S. E. Donnelly. "A New Approach to Study the Damage Induced by Inert Gases Implantation in Silicon." In Solid State Phenomena, 357–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki, Kunihiro, Norbert Strecker, and Wolfgang Fichtner. "Damage Accumulation by Arsenic Ion Implantation and Its Impact on Transient Enhanced Diffusion of As and B." In Simulation of Semiconductor Processes and Devices 1998, 51–54. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6827-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Implantation damage":

1

Dissanayake, Sashini Senali, Philippe K. Chow, Shao Qi Lim, Jim S. Williams, Jeffrey M. Warrender, and Meng-Ju Sher. "Investigating Implantation Damage of Hyperdoped Semiconductors." In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. http://dx.doi.org/10.1109/irmmw-thz50926.2021.9567359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sakai, Shigeki, Nariaki Hamamoto, Yoshiki Nakashima, and Hiroshi Onoda. "Damage control with cluster ion implantation." In 2013 13th International Workshop on Junction Technology (IWJT). IEEE, 2013. http://dx.doi.org/10.1109/iwjt.2013.6644497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petrik, P., T. Lohner, O. Polgar, and M. Fried. "Ellipsometry on ion implantation induced damage." In 2008 16th International Conference on Advanced Thermal Processing of Semiconductors (RTP). IEEE, 2008. http://dx.doi.org/10.1109/rtp.2008.4690541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Felch, S. B., R. Hung, B. Ninan, M. Smayling, N. Toshiyuki, H. Chen, and C. P. Chang. "Gate Dielectric Damage Due To High-Tilt Implant." In ION IMPLANTATION TECHNOLOGY: 16th International Conference on Ion Implantation Technology - IIT 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2401569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seki, Toshio, Takaaki Aoki, Jiro Matsuo, Edmund G. Seebauer, Susan B. Felch, Amitabh Jain, and Yevgeniy V. Kondratenko. "Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS." In ION IMPLANTATION TECHNOLOGY: 17th International Conference on Ion Implantation Technology. AIP, 2008. http://dx.doi.org/10.1063/1.3033653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borland, John, Seiichi Shishiguchi, Akira Mineji, Wade Krull, Dale Jacobson, Masayasu Tanjyo, Wilfried Lerch, et al. "High Dopant Activation And Low Damage P+ USJ Formation." In ION IMPLANTATION TECHNOLOGY: 16th International Conference on Ion Implantation Technology - IIT 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2401470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khaja, Fareen, Benjamin Colombeau, Thirumal Thanigaivelan, Deepak Ramappa, Todd Henry, Jiro Matsuo, Masataka Kase, Takaaki Aoki, and Toshio Seki. "Benefits of Damage Engineering for PMOS Junction Stability." In ION IMPLANTATION TECHNOLOGY 2101: 18th International Conference on Ion Implantation Technology IIT 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3548467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singer, J., M. Jaraíz, P. Castrillo, C. Laviron, N. Cagnat, F. Wacquant, O. Cueto, et al. "The Role of Implanter Parameters on Implant Damage Generation: an Atomistic Simulation Study." In ION IMPLANTATION TECHNOLOGY: 17th International Conference on Ion Implantation Technology. AIP, 2008. http://dx.doi.org/10.1063/1.3033594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shim, Kyuha, Yeonsang Hwang, Yongseung Lee, Jungsoo An, Seonho Ryu, Seungho Hahn, Changjune Cho, et al. "Impact of Dose Rate Effects and Damage Engineering on Device Performance." In ION IMPLANTATION TECHNOLOGY: 16th International Conference on Ion Implantation Technology - IIT 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2401480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Hank, Causon Ko-Chuan Jen, Tony Lin, Yasuhiko Matsunaga, Jiro Matsuo, Masataka Kase, Takaaki Aoki, and Toshio Seki. "Implant Damage Studies with Different Implant Temperature by Spot and Ribbon Beam." In ION IMPLANTATION TECHNOLOGY 2101: 18th International Conference on Ion Implantation Technology IIT 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3548464.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Implantation damage":

1

Venezia, V. C., A. Agarwal, T. E. Haynes, O. W. Holland, D. J. Eaglesham, M. K. Weldon, and Y. J. Chabal. The role of implantation damage in the production of silicon-on-insulator films by co-Implantation of He{sup +} and H{sup +}. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/645531.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography