Journal articles on the topic 'Implantation of alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Implantation of alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hao, Shimin, Tianyu Yang, Ao Zhang, et al. "Evaluation of Biodegradable Alloy Fe30Mn0.6N in Rabbit Femur and Cartilage through Detecting Osteogenesis and Autophagy." BioMed Research International 2023 (January 18, 2023): 1–15. http://dx.doi.org/10.1155/2023/3626776.
Full textJírů, Jitřenka, Vojtěch Hybášek, Petr Vlčák та Jaroslav Fojt. "The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys". International Journal of Molecular Sciences 24, № 2 (2023): 1656. http://dx.doi.org/10.3390/ijms24021656.
Full textSitek, Jozef, Dominika Holková, Július Dekan, Milan Pavúk, and Patrik Novák. "Formation of nanocrystalline alloys after Cu ions implantation into amorphous precursor." Journal of Electrical Engineering 70, no. 2 (2019): 171–75. http://dx.doi.org/10.2478/jee-2019-0025.
Full textGuan, Ren Guo, Tong Zhao, Lin Lin Wang, and Tong Cui. "New Magnesium Alloys for Potential Application of Implantation Biomaterial." Advanced Materials Research 79-82 (August 2009): 1443–46. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1443.
Full textOkazaki, Yoshimitsu, and Shin-ichi Katsuda. "Biological Safety Evaluation and Surface Modification of Biocompatible Ti–15Zr–4Nb Alloy." Materials 14, no. 4 (2021): 731. http://dx.doi.org/10.3390/ma14040731.
Full textFollstaedt, David. "Ion implantation produces high-strength aluminium alloys." Materials & Design 13, no. 4 (1992): 239–40. http://dx.doi.org/10.1016/0261-3069(92)90031-c.
Full textSlugen, V., V. Krsjak, W. Egger, M. Petriska, Stanislav Sojak, and Jana Veternikova. "Fe–Cr alloys behavior after helium implantation." Journal of Nuclear Materials 409, no. 2 (2011): 163–66. http://dx.doi.org/10.1016/j.jnucmat.2010.09.023.
Full textLiu, Ying, Bingheng Lu, and Zhixiong Cai. "Recent Progress on Mg- and Zn-Based Alloys for Biodegradable Vascular Stent Applications." Journal of Nanomaterials 2019 (November 5, 2019): 1–16. http://dx.doi.org/10.1155/2019/1310792.
Full textHasiuk, Petro A., Мykhailo Ramus, Anna Vorobets, et al. "COMPARATIVE EVALUATION OF HISTOTOXICITY INDICATORS OF METAL ALLOYS FOR THE MANUFACTURE OF METAL CERAMIC DENTAL CONSTRUCTIONS." Wiadomości Lekarskie 74, no. 9 (2021): 2100–2104. http://dx.doi.org/10.36740/wlek202109113.
Full textMorozova, T. V. "Cyclic deformation of Ti-Ni alloy used for endovascular device." E3S Web of Conferences 531 (2024): 01001. http://dx.doi.org/10.1051/e3sconf/202453101001.
Full textGil, Aleksander, Zbigniew Żurek, and Adam Stawiarski. "Oxidation of TiAl Alloys Coated by Fluorine Resin in SO2 Containing Atmosphere." Materials Science Forum 654-656 (June 2010): 562–65. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.562.
Full textOvchinnikov, Viktor Vasilevich, Svetlana Viktorovna Yakutina, Irina Aleksandrovna Kurbatova, Elena Vladimirovna Luk'yanenko, and Nadezda Vladimirovna Uchevatkina. "Influence of the Structural State of Titanium Alloy on the Depth of Penetration of Ions during Implantation." Materials Science Forum 1037 (July 6, 2021): 541–46. http://dx.doi.org/10.4028/www.scientific.net/msf.1037.541.
Full textXing, Haotian, Yunzhi Tang, Xinying Fa, et al. "Enhanced Biocompatibility and Osteogenic Property of Biodegradable Zn-0.5Li Alloy through Calcium–Phosphorus Coating." Coatings 14, no. 3 (2024): 350. http://dx.doi.org/10.3390/coatings14030350.
Full textGuseva, M. I., M. V. Atamanov, G. V. Gordeeva, et al. "Hardening of WC–Co alloys by ion implantation." Radiation Effects and Defects in Solids 138, no. 1-2 (1996): 57–62. http://dx.doi.org/10.1080/10420159608211509.
Full textDashiell, M. W., G. Xuan, E. Ansorge, et al. "Pseudomorphic SiC alloys formed by Ge ion implantation." Applied Physics Letters 85, no. 12 (2004): 2253–55. http://dx.doi.org/10.1063/1.1791741.
Full textAbdel-Hady Gepreel, Mohamed, and Mitsuo Niinomi. "Biocompatibility of Ti-alloys for long-term implantation." Journal of the Mechanical Behavior of Biomedical Materials 20 (April 2013): 407–15. http://dx.doi.org/10.1016/j.jmbbm.2012.11.014.
Full textHenriksen, O., B. Perrera, E. Johnson, et al. "Implantation induced CuSn alloys analyzed by RBS." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 15, no. 1-6 (1986): 254–59. http://dx.doi.org/10.1016/0168-583x(86)90297-1.
Full textLilienfeld, D. A., L. S. Hung, and J. W. Mayer. "Ion Beam Mixing: Amorphous, Crystalline, and Quasicrystalline Phases." MRS Bulletin 12, no. 2 (1987): 31–39. http://dx.doi.org/10.1557/s088376940006838x.
Full textLuo, Sha, Qing Qing Zhang, Yan Chang Zhang, Chao Li, Xiao Qing Xu, and Tie Tao Zhou. "In Vitro and In Vivo Studies on a MgLi-X Alloy System Developed as a New Kind of Biological Metal." Materials Science Forum 747-748 (February 2013): 257–63. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.257.
Full textVertat, Petr, Jan Drahokoupil, and Petr Vlcak. "SURFACE CHARACTERIZATION OF TITANIUM ALLOYS FOR NITROGEN ION IMPLANTATION." Acta Polytechnica CTU Proceedings 9 (July 28, 2017): 39. http://dx.doi.org/10.14311/app.2017.9.0039.
Full textWada, Tadahiro, Jun Nakanishi, Yasuhiro Miki, Makoto Asano, Koji Iwamoto, and Hiroyuki Hanyu. "Surface Modification of Aluminum Alloy Using Plasma Based Ion Implantation and Deposition." Advanced Materials Research 488-489 (March 2012): 960–66. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.960.
Full textWang, Y., D. H. Zhang, Y. J. Jin, X. Z. Chen, and J. H. Li. "Electrical Properties of InSbN Alloys Fabricated by Two-Step Ion Implantation." Advanced Materials Research 569 (September 2012): 305–10. http://dx.doi.org/10.4028/www.scientific.net/amr.569.305.
Full textLiu, Fei, Xinyu Wang, Shujun Li, et al. "Strontium-Loaded Nanotubes of Ti–24Nb–4Zr–8Sn Alloys for Biomedical Implantation." Journal of Biomedical Nanotechnology 17, no. 9 (2021): 1812–23. http://dx.doi.org/10.1166/jbn.2021.3160.
Full textHanawa, Takao. "Recent Development of New Alloys for Biomedical Use." Materials Science Forum 512 (April 2006): 243–48. http://dx.doi.org/10.4028/www.scientific.net/msf.512.243.
Full textCarquigny, Stéphanie, Jamal Takadoum, and Steliana Ivanescu. "Comparative study of nitrogen implantation effect on mechanical and tribological properties of Ti-6Al-4V and Ti-10Zr-10Nb-5Ta alloys." European Physical Journal Applied Physics 85, no. 2 (2019): 21301. http://dx.doi.org/10.1051/epjap/2019180149.
Full textZemcík, T., and E. Kisdi-Koszó. "Ion Implantation Induced Crystallization of Fe-B Amorphous Alloys." Key Engineering Materials 81-83 (January 1993): 363–68. http://dx.doi.org/10.4028/www.scientific.net/kem.81-83.363.
Full textPogrebnjak, A. D., S. N. Bratushka, V. V. Uglov, et al. "Structures and properties of Ti alloys after double implantation." Vacuum 83 (May 2009): S240—S244. http://dx.doi.org/10.1016/j.vacuum.2009.01.072.
Full textZhenjin, Lin, Wu Liu, Yang Xizhen, et al. "Formation of GaP1−xNx alloys by double ion implantation." Vacuum 39, no. 2-4 (1989): 215–16. http://dx.doi.org/10.1016/0042-207x(89)90200-5.
Full textBarry, John E., Eric J. Tobin, and Piran Sioshansi. "Ion implantation of titanium alloys for improved fretting resistance." Surface and Coatings Technology 51, no. 1-3 (1992): 176–79. http://dx.doi.org/10.1016/0257-8972(92)90234-2.
Full textMalaczynski, G. W., A. H. Hamdi, A. A. Elmoursi, and X. Qiu. "Ion implantation and diamond-like coatings of aluminum alloys." Journal of Materials Engineering and Performance 6, no. 2 (1997): 223–39. http://dx.doi.org/10.1007/s11665-997-0019-y.
Full textSioshansi, Piran. "Improving the properties of titanium alloys by ion implantation." JOM 42, no. 3 (1990): 30–31. http://dx.doi.org/10.1007/bf03220891.
Full textSioshansi, Piran, Richard W. Oliver, and Frank D. Matthews. "Wear improvement of surgical titanium alloys by ion implantation." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 3, no. 6 (1985): 2670–74. http://dx.doi.org/10.1116/1.572811.
Full textPearton, S. J., C. B. Vartuli, R. J. Shul, and J. C. Zolper. "Dry etching and implantation characteristics of III-N alloys." Materials Science and Engineering: B 31, no. 3 (1995): 309–17. http://dx.doi.org/10.1016/0921-5107(94)01154-0.
Full textNovák, Patrik, Aleksandr Gokhman, Edmund Dobročka, Jozef Bokor, and Stanislav Pecko. "Investigation Of Helium Implanted Fe–Cr Alloys By Means Of X–Ray Diffraction And Positron Annihilation Spectroscopy." Journal of Electrical Engineering 66, no. 6 (2015): 334–38. http://dx.doi.org/10.2478/jee-2015-0055.
Full textZhu, Tianping, Fang Fang, John Kennedy, and Wei Gao. "ELECTROCHEMICAL BEHAVIOURS OF Mg-4Zn-3Sn CAST ALLOY MODIFIED BY Ti ION IMPLANTATION." International Journal of Modern Physics: Conference Series 06 (January 2012): 700–704. http://dx.doi.org/10.1142/s201019451200400x.
Full textCastagnet, M., L. M. Yogi, M. M. Silva, et al. "Microstructural Analysis of Ti-6Al-4V Alloy after Plasma Immersion Ion Implantation (PIII)." Materials Science Forum 727-728 (August 2012): 50–55. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.50.
Full textCho, Ken, Mitsuo Niinomi, Masaaki Nakai та ін. "Mechanical and Biological Biocompatibilityof Novel β-Type Ti-Mn Alloys for Biomedical Applications". Materials Science Forum 783-786 (травень 2014): 1232–37. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.1232.
Full textLiu, Li, Atsushi Yamamoto, Takanori Hishida, Hiroaki Shoyama, Tamio Hara, and Harushige Tsubakino. "Surface Modification of Aluminum Alloys Prepared by Plasma-Based-Ion-Implantation Technique." Solid State Phenomena 118 (December 2006): 269–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.118.269.
Full textRahmati, Maryam, Sabine Stötzel, Thaqif El Khassawna, et al. "Early osteoimmunomodulatory effects of magnesium–calcium–zinc alloys." Journal of Tissue Engineering 12 (January 2021): 204173142110471. http://dx.doi.org/10.1177/20417314211047100.
Full textAbreu, C. M., M. J. Cristóbal, P. Merino, G. Pena, and M. C. Pérez. "An Insight on the Influence of Ion Implantation on the Pitting Corrosion Resistance of AISI 430 Stainless Steel." Defect and Diffusion Forum 289-292 (April 2009): 501–8. http://dx.doi.org/10.4028/www.scientific.net/ddf.289-292.501.
Full textZhi, Peixuan, Leixin Liu, Jinke Chang, et al. "Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material." Metals 12, no. 9 (2022): 1500. http://dx.doi.org/10.3390/met12091500.
Full textBotasheva, V. S., A. A. Dolgalev, D. Yu Christoforando, et al. "Investigation of biocompatibility and angiogenesis in vivo on a model of chorioallantois membrane of a chicken embryo of samples for implantation surgery based on titanium and its alloys." Medical alphabet, no. 28 (January 12, 2025): 107–11. https://doi.org/10.33667/2078-5631-2024-28-107-111.
Full textSzala, Mirosław. "Phenomenological Model of Cavitation Erosion of Nitrogen ION Implanted Hiped Stellite 6." Advances in Materials Science 23, no. 1 (2023): 98–109. http://dx.doi.org/10.2478/adms-2023-0007.
Full textLagow, B. W., I. M. Robertson, L. E. Rehn, P. M. Baldo, J. J. Coleman, and T. S. Yeoh. "Compositional variation of microstructure in ion-implanted AlxGa1−xAs." Journal of Materials Research 15, no. 9 (2000): 2043–53. http://dx.doi.org/10.1557/jmr.2000.0293.
Full textOVCHINNIKOV, V. V., N. V. UCHEVATKINA, I. A. KURBATOVA, E. V. LUKYANENKO, and S. V. YAKUTINA. "VT6 TITANIUM ALLOY WEARABILITY INCREASE VIA IMPLANTATION OF COPPER AND ALUMINUM IONS." Periódico Tchê Química 16, no. 32 (2019): 945–66. http://dx.doi.org/10.52571/ptq.v16.n32.2019.963_periodico32_pgs_945_966.pdf.
Full textVorobyev, V. L., P. V. Bykov, S. G. Bystrov, A. A. Kolotov, and V. Ya Bayankin. "The effect of the chemical activity of the implanted element to metal alloy components on the formation of surface layers under ion irradiation." Diagnostics, Resource and Mechanics of materials and structures, no. 3 (June 2023): 29–43. http://dx.doi.org/10.17804/2410-9908.2023.3.029-043.
Full textYasenchuk, Yu, N. V. Artyuhova, K. V. Almaeva, A. S. Garin, and V. E. Gunther. "Segregation in Porous NiTi Made by SHS in Flow Reactor." KnE Materials Science 2, no. 1 (2017): 168. http://dx.doi.org/10.18502/kms.v2i1.793.
Full textSommer, Nicole G., Sandra Gieringer, Uwe Y. Schwarze, Annelie-M. Weinberg, Talal Al-Samman, and Yuri Estrin. "In Vivo Performance of Magnesium Alloy LX41 in a Rat Model." Processes 10, no. 11 (2022): 2222. http://dx.doi.org/10.3390/pr10112222.
Full textRangel, Carmen M., and M. A. Travassos. "The Passivation of Al-W Alloys Produced by Ion Implantation." Materials Science Forum 192-194 (August 1995): 53–62. http://dx.doi.org/10.4028/www.scientific.net/msf.192-194.53.
Full textPerry, A. J. "Ion Implantation of Titanium Alloys for Biomaterial and Other Applications." Surface Engineering 3, no. 2 (1987): 154–60. http://dx.doi.org/10.1179/sur.1987.3.2.154.
Full text