Dissertations / Theses on the topic 'Implicit incompressible smoothed particle hydrodynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Implicit incompressible smoothed particle hydrodynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Shimizu, Yuma. "Enhanced Particle Methods with Highly-Resolved Phase Boundaries for Incompressible Fluid Flow." Kyoto University, 2019. http://hdl.handle.net/2433/244528.
Full textEliasson, André, and Pontus Franzén. "Accelerating IISPH : A Parallel GPGPU Solution Using CUDA." Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10429.
Full textXu, Rui. "An improved incompressible smoothed particle hydrodynamics method and its application in free-surface simulations." Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706080.
Full textGartner, Nicolas. "Identification de paramètres hydrodynamiques par simulation avec Smoothed Particle Hydrodynamics." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0004.
Full textThis thesis focuses on techniques that allows the simulation of dynamic interactions between an underwater vehicle and the surrounding water. The main objective is to propose a satisfactory solution to be able to test control algorithms and hull shapes for underwater vehicles upstream of the design process. In those cases, it would be interesting to be able to simulate solid and fluid dynamics at the same time. The idea developed in this thesis is to use the Smoothed Particles Hydrodynamics (SPH) technique, which is very recent, and which models the fluid as a set of particles without mesh. In order to validate the simulation results a first study has been performed with a hydrodynamic pendulum. This study allowed the development of an innovative method for estimating the hydrodynamic parameters (friction forces and added mass) which is more robust than previous existing methods when it is necessary to use numerical derivatives of the measured signal. Then, the use of two types of SPH solver: Weakly Compressible SPH and Incompressible SPH, is validated following the validation approach proposed in this thesis. Firstly, the behaviour of the fluid alone is studied, secondly, a hydrostatic case, and finally a dynamic case. The use of two methods for modelling the fluid-solid interaction: the pressure mirroring method and the extrapolation method is studied. The ability to reach a limit velocity due to friction forces is demonstrated. The results of the hydrodynamic parameters estimation from simulation tests are finally discussed. The simulated added mass of the solid approaches reality, but the friction forces currently seem not to correspond to reality. Possible improvements to overcome this problem are proposed
Santos, Ricardo Dias dos. "Uma formulação implícita para o método Smoothed Particle Hydrodynamics." Universidade do Estado do Rio de Janeiro, 2014. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6751.
Full textEm uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.
In a wide range of physical problems governed by differential equations, it is often of interest to obtain solutions for the unsteady state and therefore it must be employed temporal integration techniques. One possibility could be the use of an explicit methods due to its simplicity and computational efficiency. However, these methods are often only conditionally stable and are subject to severe restrictions for the time step choice. For advective problems governed by hyperbolic equations, this restriction is known as the Courant-Friedrichs-Lewy (CFL) condition. When there is the need to obtain numerical solutions for long periods of time, or when the computational cost for each time step is high, this condition becomes a handicap. In order to overcome this restriction implicit methods can be used, which are generally unconditionally stable. In this study, some implicit formulations for time integration are used in the Smoothed Particle Hydrodynamics (SPH) method to enable the use of larger time increments and obtain a strong stability in the time evolution process. Due to the high computational cost required by the particles tracking at each time step, the implementation will be feasible only if efficient algorithms were applied for this type of matrix structure such as Krylov subspace methods. Therefore, we carried out a study for the appropriate choice of methods best suited to this problem, and the methods chosen were the Bi-Conjugate Gradient (BiCG), the Bi-Conjugate Gradient Stabilized (BiCGSTAB) and the Quasi-Minimal Residual(QMR). Some test problems were used to validate the numerical solutions obtained with the implicit version of the SPH method.
Hosein, Falahaty. "Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure." Kyoto University, 2018. http://hdl.handle.net/2433/235070.
Full textBankole, Adeleke Olusegun [Verfasser], and Armin [Akademischer Betreuer] Iske. "A Semi-implicit Smoothed Particle Hydrodynamics Method for the Numerical Simulation of Shallow Water Flows / Adeleke Olusegun Bankole ; Betreuer: Armin Iske." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1130323331/34.
Full textFreitas, Mayksoel Medeiros de. "Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=4839.
Full textIn this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.
Helbling, Marc. "Sculpture virtuelle par système de particules." Thesis, Rouen, INSA, 2010. http://www.theses.fr/2010ISAM0030/document.
Full text3D is emerging as a new media. Its widespread adoption requires the implementation of userfriendly tools to create and manipulate three-dimensional shapes. Current softwares heavily rely on underlying shape modeling, usually a surfacic one, and are then often counter-intuitive orlimiting. Our objective is the design of an approach alleviating those limitations and allowing the user to only focus on the process of creating forms. Drawing inspiration from the ancient use of clay,we propose to model a material in a lagrangian description. A shape is described by a particles system, where each particle represents a small fraction of the total volume of the shape. In this framework, the Smoothed Particle Hydrodynamics method enables to approximate physical values anywhere in space. Relying on this method, we propose a modeling of material with two levels, one level representing the topology and the other one describing local geometry of the shape.The SPH method especially enables to evaluate a density of matter. We use this property todefine an implicit surface based on the physical properties of the particles system to reproduce the continuous aspect of matter. Those virtual materials can then be manipulated locally through interactions reproducing the handling of dough in the real world or through global shape deformation. Our approach is demonstrated by several prototypes running either on typical desktop workstation or in immersive environment system
Rioux-Lavoie, Damien. "Méthode SPH implicite d’ordre 2 appliquée à des fluides incompressibles munis d’une frontière libre." Thèse, 2017. http://hdl.handle.net/1866/19377.
Full textThe objective of this thesis is to introduce a new implicit purely lagrangian smoothed particle hydrodynamics (SPH) method, for the resolution of the two-dimensional incompressible Navier-Stokes equations in the presence of a free surface. Our discretization scheme is based on that of Kéou Noutcheuwa et Owens [19]. We have treated the free surface by combining Yildiz et al. [43] multiple boundary tangent (MBT) method and boundary conditions on the auxiliary fields of Yang et Prosperetti [42]. In this way, we obtain a discretization scheme of order $\mathcal{O}(\Delta t ^2)$ and $\mathcal{O}(\Delta x ^2)$, according to certain constraints on the smoothing length $h$. First, we tested our scheme with a two-dimensional Poiseuille flow by means of which we analyze the discretization error of the SPH method. Then, we tried to simulate a two-dimensional Newtonian extrusion problem. Unfortunately, although the behavior of the free surface is satisfactory, we have encountered numerical problems on the singularity at the output of the die.
Moballa, Burniadi, and 伯納蒂. "Incompressible smoothed particle hydrodynamics modelling for thermal convection in enclosure space." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/41836079117736856128.
Full text國立臺灣科技大學
機械工程系
100
An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental pressure projection method is developed in this study. The Rayleigh-B\'enard convection in a square enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to the benchmark solutions. The comparison shows that the estabished ISPH method has a good performance in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are in good agreements with the results obtained by previous studies using alternative numerical methods. A rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process in the enclosure space. The numerical results show that for a square enclosure at Ra/Re_D^2 ≥ 1.0, the addition of kinetic energy in the form of rotation does not enhance the heat transfer process. In terms of results, it turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and moving boundaries without adapting a mesh.
Yeylaghi, Shahab. "A parallel explicit incompressible smoothed particle hydrodynamics (ISPH) model for nonlinear hydrodynamic applications." Thesis, 2016. http://hdl.handle.net/1828/7661.
Full textGraduate
Pu, Jaan H., and Songdong Shao. "Smoothed Particle Hydrodynamics Simulation of Wave Overtopping Characteristics for Different Coastal Structures." 2012. http://hdl.handle.net/10454/11562.
Full textThis research paper presents an incompressible smoothed particle hydrodynamics (ISPH) technique to investigate a regular wave overtopping on the coastal structure of different types. The SPH method is a mesh-free particle modeling approach that can efficiently treat the large deformation of free surface. The incompressible SPH approach employs a true hydrodynamic formulation to solve the fluid pressure that has less pressure fluctuations. The generation of flow turbulence during the wave breaking and overtopping is modeled by a subparticle scale (SPS) turbulence model. Here the ISPH model is used to investigate the wave overtopping over a coastal structure with and without the porous material. The computations disclosed the features of flow velocity, turbulence, and pressure distributions for different structure types and indicated that the existence of a layer of porous material can effectively reduce the wave impact pressure and overtopping rate. The proposed numerical model is expected to provide a promising practical tool to investigate the complicated wave-structure interactions.
Nazarbayev University Seed Grant, entitled “Environmental assessment of sediment pollution impact on hydropower plants”. S. Shao also acknowledges the Royal Society Research Grant (2008/R2 RG080561)
Nair, Prapanch. "Modeling Free Surface Flows and Fluid Structure Interactions using Smoothed Particle Hydrodynamics." Thesis, 2015. http://etd.iisc.ernet.in/2005/3766.
Full textShao, Songdong, and H. Gotoh. "Turbulence particle models for tracking free surfaces." 2005. http://hdl.handle.net/10454/4086.
Full textTwo numerical particle models, the Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) methods, coupled with a sub-particle scale (SPS) turbulence model, are presented to simulate free surface flows. Both SPH and MPS methods have the advantages in that the governing Navier¿Stokes equations are solved by Lagrangian approach and no grid is needed in the computation. Thus the free surface can be easily and accurately tracked by particles without numerical diffusion. In this paper different particle interaction models for SPH and MPS methods are summarized and compared. The robustness of two models is validated through experimental data of a dam-break flow. In addition, a series of numerical runs are carried out to investigate the order of convergence of the models with regard to the time step and particle spacing. Finally the efficiency of the incorporated SPS model is further demonstrated by the computed turbulence patterns from a breaking wave. It is shown that both SPH and MPS models provide a useful tool for simulating free surface flows
Shao, Songdong. "Turbulence particle models for tracking free surfaces." 2005. http://hdl.handle.net/10454/471.
Full textKéou, Noutcheuwa Rodrigue Giselin. "Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques." Thèse, 2012. http://hdl.handle.net/1866/9705.
Full textIn this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.