Journal articles on the topic 'Implosion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Implosion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dewald, E. L., S. A. MacLaren, D. A. Martinez, et al. "First graded metal pushered single shell capsule implosions on the National Ignition Facility." Physics of Plasmas 29, no. 5 (2022): 052707. http://dx.doi.org/10.1063/5.0083089.
Full textChoe, W. H., and R. C. Venkatesan. "Self-similar solutions of screw-pinch plasma implosion." Laser and Particle Beams 8, no. 3 (1990): 485–91. http://dx.doi.org/10.1017/s0263034600008727.
Full textLindl, John D., Steven W. Haan, and Otto L. Landen. "Impact of hohlraum cooling on ignition metrics for inertial fusion implosions." Physics of Plasmas 30, no. 1 (2023): 012705. http://dx.doi.org/10.1063/5.0113138.
Full textManheimer, W., and D. Colombant. "Effects of viscosity in modeling laser fusion implosions." Laser and Particle Beams 25, no. 4 (2007): 541–47. http://dx.doi.org/10.1017/s0263034607000663.
Full textBaker, K. L., O. Jones, C. Weber, et al. "Hydroscaling indirect-drive implosions on the National Ignition Facility." Physics of Plasmas 29, no. 6 (2022): 062705. http://dx.doi.org/10.1063/5.0080732.
Full textLi, Chuanying, Jianfa Gu, Fengjun Ge, Zhensheng Dai, and Shiyang Zou. "Impact of different electron thermal conductivity models on the performance of cryogenic implosions." Physics of Plasmas 29, no. 4 (2022): 042702. http://dx.doi.org/10.1063/5.0066708.
Full textRoycroft, R., J. P. Sauppe, and P. A. Bradley. "Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF." Physics of Plasmas 29, no. 3 (2022): 032704. http://dx.doi.org/10.1063/5.0083190.
Full textBarlow, D., T. Goffrey, K. Bennett, et al. "Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility." Physics of Plasmas 29, no. 8 (2022): 082704. http://dx.doi.org/10.1063/5.0097080.
Full textNishimura, H., H. Shiraga, T. Endo, et al. "Radiation-driven cannonball targets for high-convergence implosions." Laser and Particle Beams 11, no. 1 (1993): 89–96. http://dx.doi.org/10.1017/s0263034600006947.
Full textChristopherson, A. R., R. Betti, C. J. Forrest, et al. "Inferences of hot electron preheat and its spatial distribution in OMEGA direct drive implosions." Physics of Plasmas 29, no. 12 (2022): 122703. http://dx.doi.org/10.1063/5.0091220.
Full textIkeda, C. M., J. Wilkerling, and J. H. Duncan. "The implosion of cylindrical shell structures in a high-pressure water environment." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, no. 2160 (2013): 20130443. http://dx.doi.org/10.1098/rspa.2013.0443.
Full textHaines, Brian M., J. P. Sauppe, B. J. Albright, et al. "A mechanism for reduced compression in indirectly driven layered capsule implosions." Physics of Plasmas 29, no. 4 (2022): 042704. http://dx.doi.org/10.1063/5.0083299.
Full textSugitani, Koji, Yasuo Fukui, and Katsuo Ogura. "Bright-rimmed clouds with IRAS point sources: candidates for star formation by radiation-driven implosion." Symposium - International Astronomical Union 147 (1991): 498–99. http://dx.doi.org/10.1017/s0074180900240163.
Full textSugitani, Koji, Yasuo Fukui, and Katsuo Ogura. "Bright-rimmed clouds with IRAS point sources: candidates for star formation by radiation-driven implosion." Symposium - International Astronomical Union 147 (1991): 498–99. http://dx.doi.org/10.1017/s0074180900199541.
Full textBaltazar, J., R. Betti, K. Churnetski та ін. "Diagnosing low-mode (ℓ < 6) and mid-mode (6 ≤ ℓ ≤ 60) asymmetries in the post-stagnation phase of laser-direct-drive deuterium–tritium cryogenic implosions on OMEGA". Review of Scientific Instruments 93, № 12 (2022): 123513. http://dx.doi.org/10.1063/5.0101653.
Full textAndré, M., D. Babonneau, C. Bayer, et al. "Progress in inertial confinement fusion physics at Centre d'Etudes de Limeil-Valenton." Laser and Particle Beams 12, no. 3 (1994): 329–42. http://dx.doi.org/10.1017/s0263034600008181.
Full textSio, H., O. Larroche, A. Bose, et al. "Fuel–shell mix and yield degradation in kinetic shock-driven inertial confinement fusion implosions." Physics of Plasmas 29, no. 7 (2022): 072710. http://dx.doi.org/10.1063/5.0087905.
Full textHEYA, MANABU, HIROYUKI SHIRAGA, ATSUSHI SUNAHARA, et al. "Implosion experiments of gas-filled plastic-shell targets with [ell ] = 1 drive nonuniformity at the Gekko-XII glass laser." Laser and Particle Beams 19, no. 2 (2001): 267–84. http://dx.doi.org/10.1017/s0263034601192177.
Full textKöpcke, Maris. "Positivism’s Implosion." American Journal of Jurisprudence 66, no. 2 (2021): 355–71. http://dx.doi.org/10.1093/ajj/auab017.
Full textPeters, Han, and Liz Vivas. "Parabolic Implosion." Notices of the American Mathematical Society 67, no. 08 (2020): 1. http://dx.doi.org/10.1090/noti2132.
Full textZavattaro, Staci M. "Organizational Implosion." Administration & Society 46, no. 9 (2014): 1071–91. http://dx.doi.org/10.1177/0095399714554681.
Full textYen, Nai‐chyuan. "Implosion sound." Journal of the Acoustical Society of America 98, no. 5 (1995): 2876. http://dx.doi.org/10.1121/1.413179.
Full textGuillemin, Victor, Lisa Jeffrey Jeffrey, and Reyer Sjamaar Sjamaar. "Symplectic Implosion." Transformation Groups 7, no. 2 (2002): 155–85. http://dx.doi.org/10.1007/s00031-002-0009-y.
Full textKerr, David. "Information Implosion." Journal of the Royal College of Physicians of London 29, no. 4 (1995): 265. https://doi.org/10.1016/s0035-8819(25)00560-4.
Full textWalsh, C. A., R. Florido, M. Bailly-Grandvaux, et al. "Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets." Plasma Physics and Controlled Fusion 64, no. 2 (2022): 025007. http://dx.doi.org/10.1088/1361-6587/ac3f25.
Full textLees, A., R. Betti, J. P. Knauer, et al. "Understanding the fusion yield dependencies in OMEGA DT-layered implosion experiments using a physics-based statistical mapping model." Physics of Plasmas 30, no. 1 (2023): 012709. http://dx.doi.org/10.1063/5.0106515.
Full textKissiedu, Evelyn Esenam, Israel Kofi Nyarko, and Michael Ahiaga Mawuta. "Examining the Triggers, Signals, and Implications of Corporate Implosion: Lessons and Intervention Strategies for Private Universities in Africa." Journal of Education, Society and Behavioural Science 37, no. 5 (2024): 31–48. http://dx.doi.org/10.9734/jesbs/2024/v37i51321.
Full textYanagawa, T., H. Sakagami, A. Sunahara, and H. Nagatomo. "Asymmetric implosion of a cone-guided target irradiated by Gekko XII laser." Laser and Particle Beams 33, no. 3 (2015): 367–78. http://dx.doi.org/10.1017/s0263034615000427.
Full textKYRALA, GEORGE A., NORMAN DELAMATER, DOUGLAS WILSON, et al. "Direct drive double shell target implosion hydrodynamics on OMEGA." Laser and Particle Beams 23, no. 2 (2005): 187–92. http://dx.doi.org/10.1017/s0263034605050330.
Full textJoshi, T. R., R. C. Shah, W. Theobald, et al. "Diagnosis of the imploding shell asymmetry in polar-direct-drive deuterium–tritium cryogenic target implosions on OMEGA." Review of Scientific Instruments 93, no. 9 (2022): 093524. http://dx.doi.org/10.1063/5.0101567.
Full textKunimune, J. H., H. G. Rinderknecht, P. J. Adrian, et al. "Knock-on deuteron imaging for diagnosing the morphology of an ICF implosion at OMEGA." Physics of Plasmas 29, no. 7 (2022): 072711. http://dx.doi.org/10.1063/5.0096786.
Full textRinderknecht, H. G., P. V. Heuer, J. Kunimune, et al. "A knock-on deuteron imager for measurements of fuel and hotspot asymmetry in direct-drive inertial confinement fusion implosions (invited)." Review of Scientific Instruments 93, no. 9 (2022): 093507. http://dx.doi.org/10.1063/5.0099301.
Full textSOMEYA, TETSUO, KENTAROU MIYAZAWA, TAKASHI KIKUCHI, and SHIGEO KAWATA. "Direct-indirect mixture implosion in heavy ion fusion." Laser and Particle Beams 24, no. 3 (2006): 359–69. http://dx.doi.org/10.1017/s0263034606060526.
Full textSingh, Shailendra, and Ritam Mallick. "Time-like detonation in presence of magnetic field." Laser and Particle Beams 37, no. 01 (2019): 30–37. http://dx.doi.org/10.1017/s0263034619000041.
Full textPaddock, R. W., H. Martin, R. T. Ruskov, et al. "One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2189 (2020): 20200224. http://dx.doi.org/10.1098/rsta.2020.0224.
Full textROSCH, R., D. FRIART, M. DARRIGOL, et al. "The implosion dynamics and emission characteristics of Al liner-on-wire implosions." Laser and Particle Beams 18, no. 2 (2000): 307–13. http://dx.doi.org/10.1017/s0263034600182217.
Full textPhillips, J. C. "American physics implosion." Physics Today 60, no. 10 (2007): 16. http://dx.doi.org/10.1063/1.2800083.
Full textRoncayolo, Marcel. "Dilution et implosion." Espaces Temps 33, no. 1 (1986): 13–14. http://dx.doi.org/10.3406/espat.1986.3311.
Full textLoizeaux, J. Mark, and Douglas K. Loizeaux. "Demolition by Implosion." Scientific American 273, no. 4 (1995): 146–53. http://dx.doi.org/10.1038/scientificamerican1095-146.
Full textQadeer, Mohammad A. "Urbanization by implosion." Habitat International 28, no. 1 (2004): 1–12. http://dx.doi.org/10.1016/s0197-3975(02)00069-3.
Full textYamanaka, C. "Laser driven implosion." Laser and Particle Beams 8, no. 1-2 (1990): 3–17. http://dx.doi.org/10.1017/s0263034600007783.
Full textEberstadt, Nicholas. "The Population Implosion." Foreign Policy, no. 123 (March 2001): 42. http://dx.doi.org/10.2307/3183154.
Full textWinthrop-Young, Geoffrey. "Implosion and Intoxication." Theory, Culture & Society 23, no. 7-8 (2006): 75–91. http://dx.doi.org/10.1177/0263276406069884.
Full textWeidenfeld, Ursula. "Implosion einer Krisenkanzlerin?" Indes 10, no. 1-2 (2022): 127–35. http://dx.doi.org/10.13109/inde.2022.10.1-2.127.
Full textAnanya, A. B., and Joseph Jikhil. "Controlled Building Implosion." Journal of Structural Engineering, its Applications and Analysis 7, no. 2 (2024): 37–47. https://doi.org/10.5281/zenodo.10930726.
Full textXia, Tian Xiang, Tong Zhao, Liang Zou, Li Zhang, and Feng Zhu. "Research on Two-Dimensional MHD Simulations of X-Pinch Implosion and its Physical Aspects." Applied Mechanics and Materials 525 (February 2014): 316–19. http://dx.doi.org/10.4028/www.scientific.net/amm.525.316.
Full textIinuma, T., T. Karino, S. Kondo, et al. "Control of fuel target implosion non-uniformity in heavy ion inertial fusion." Laser and Particle Beams 34, no. 4 (2016): 729–34. http://dx.doi.org/10.1017/s0263034616000677.
Full textSreedhar, V. V., and Amitabh Virmani. "Maximal Kinematical Invariance Group of Fluid Dynamics and Applications." Universe 8, no. 6 (2022): 319. http://dx.doi.org/10.3390/universe8060319.
Full textKawata, S., K. Noguchi, T. Suzuki, et al. "Uniformity of fuel target implosion in heavy ion fusion." Laser and Particle Beams 33, no. 4 (2015): 591–99. http://dx.doi.org/10.1017/s026303461500066x.
Full textHuneault, Justin, David Plant, and Andrew J. Higgins. "Rotational stabilisation of the Rayleigh–Taylor instability at the inner surface of an imploding liquid shell." Journal of Fluid Mechanics 873 (June 25, 2019): 531–67. http://dx.doi.org/10.1017/jfm.2019.346.
Full text