Academic literature on the topic 'Impregnated reinforcement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Impregnated reinforcement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Impregnated reinforcement"
Vlach, Tomáš, Lenka Laiblová, Jakub Řepka, Zuzana Jirkalová, and Petr Hájek. "EXPERIMENTAL VERIFICATION OF IMPREGNATED TEXTILE REINFORCEMENT SPLICING BY OVERLAPPING." Acta Polytechnica CTU Proceedings 22 (July 25, 2019): 128–32. http://dx.doi.org/10.14311/app.2019.22.0128.
Full textHegger, Josef, Christian Kulas, and Michael Horstmann. "Realization of TRC Façades with Impregnated AR-Glass Textiles." Key Engineering Materials 466 (January 2011): 121–30. http://dx.doi.org/10.4028/www.scientific.net/kem.466.121.
Full textAsgharzadeh, Amir, and Michael Raupach. "Tensile strength of carbon rovings impregnated with different materials under anodic polarization." MATEC Web of Conferences 199 (2018): 11015. http://dx.doi.org/10.1051/matecconf/201819911015.
Full textGhazzawi, Yousof M., Andres F. Osorio, and Michael T. Heitzmann. "Fire performance of continuous glass fibre reinforced polycarbonate composites: The effect of fibre architecture on the fire properties of polycarbonate composites." Journal of Composite Materials 53, no. 12 (October 23, 2018): 1705–15. http://dx.doi.org/10.1177/0021998318808052.
Full textObradovic, Vera, Dusica Stojanovic, Aleksandar Kojovic, Irena Zivkovic, Vesna Radojevic, Petar Uskokovic, and Radoslav Aleksic. "Aramid composites impregnated with different reinforcement: Nanofibers, nanoparticles and nanotubes." Zastita materijala 55, no. 4 (2014): 351–61. http://dx.doi.org/10.5937/zasmat1404351o.
Full textAbida, Marwa, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, and Mohamed Haddar. "Effect of hygroscopy on non-impregnated quasi-unidirectional flax reinforcement behaviour." Industrial Crops and Products 128 (February 2019): 315–22. http://dx.doi.org/10.1016/j.indcrop.2018.11.008.
Full textVasileiou, G., C. Vakouftsis, N. Rogkas, S. Tsolakis, P. Zalimidis, and V. Spitas. "Design and construction of a continuous impregnation apparatus of woven fibres, using non-meshing double-sinusoidal toothed rollers." MATEC Web of Conferences 317 (2020): 01006. http://dx.doi.org/10.1051/matecconf/202031701006.
Full textPidun, Kevin, and Thomas Gries. "Shaped Textile Reinforcement Elements for Concrete Components." Advanced Materials Research 747 (August 2013): 415–19. http://dx.doi.org/10.4028/www.scientific.net/amr.747.415.
Full textHatta, Minori, Akikazu Shinya, Harunori Gomi, Pekka K. Vallittu, Eija Säilynoja, and Lippo V. J. Lassila. "Effect of Interpenetrating Polymer Network (IPN) Thermoplastic Resin on Flexural Strength of Fibre-Reinforced Composite and the Penetration of Bonding Resin into Semi-IPN FRC Post." Polymers 13, no. 18 (September 21, 2021): 3200. http://dx.doi.org/10.3390/polym13183200.
Full textChoi, Sung-Woong, Sung-Ha Kim, Mei-Xian Li, Jeong-Hyeon Yang, and Hyeong-Min Yoo. "Tow Deformation Behaviors in Resin-Impregnated Glass Fibers under Different Flow Rates." Applied Sciences 11, no. 8 (April 16, 2021): 3575. http://dx.doi.org/10.3390/app11083575.
Full textDissertations / Theses on the topic "Impregnated reinforcement"
Raupach, Michael, Jeanette Orlowsky, and Till Büttner. "Verbesserung der Dauerhaftigkeit von Textilbeton mittels Polymeren - Materialauswahl und Langzeitprognose." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77938.
Full textThe reinforcement in TRC (Textile Reinforced Concrete) is usually made of alkali-resistant glass rovings due to their low price and availability on the market, but even the glass composition is changed compares to E-glass to increase its alkali resistance the durability in concrete is known to be unsatisfactory. One possibility to increase the durability is the application of a diffusion barrier around the reinforcement. The diffusion barrier can be made out of reactive polymeric coatings. Within the paper the results regarding the durability of AR-glass reinforcement achieved with a variety of reactive materials, mainly epoxy resins, will be presented as well as discussed. In addition to the results achieved in the laboratory, a model which allows long term predictions of the durability of polymer impregnated AR-glass reinforcements will be presented
Büttner, Till, Allessandra Keil, Jeanette Orlowsky, and Michael Raupach. "Einsatz von Polymeren in Textilbeton – Entwicklung polymermodifizierter Betone und Einflüsse auf die Dauerhaftigkeit." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244045457582-60801.
Full textPinto, Nuno Ferreira. "Estudo e avaliação experimental de tecnologia IMR (in-mould reinforcement)." Master's thesis, 2013. http://hdl.handle.net/1822/30378.
Full textO presente trabalho destinou-se a desenvolver um processo que permitisse oferecer a possibilidade de impregnar reforços de fibras contínuas em termoplásticos, através da utilização de mantas secas. Para atingir este objetivo foi utilizado o processo de moldação por injeção e a compressão a quente. Assim, neste trabalho realizou-se o estudo e avaliação de materiais e tecnologias já disponíveis no mercado. Foi feita ainda uma pesquisa detalhada pelas várias áreas individuais identificadas: reforços secos, reforços impregnados e a modelação de processos. Baseado nos resultados desta investigação, definiram-se e executaram-se ensaios de processamento e através de caracterização das propriedades dos materiais resultantes, bem como foram avaliadas as várias soluções e selecionada a solução mais promissora. Tendo em consideração os pontos-chave de desenvolvimento identificados, o projeto implicou um desenvolvimento paralelo em duas áreas tecnológicas distintas e conjugadas: materiais e tecnologias de produção de termoplásticos reforçados com fibras contínuas (CFRT’s), moldação por injeção de termoplásticos e moldação por compressão a quente. No que concerne aos materiais, foi estudada a capacidade de um compósito, com matriz – reforço correspondente a polipropileno – fibras de vidro continuas. Para este estudo foi concluído que o material compósito em questão apresenta, maioritariamente nos processos executados, melhores desempenhos que o PP, sendo estes superiores quando o número de camadas de fibras é quatro ao invés de uma ou duas camadas. No entanto foram apresentados melhores resultados de propriedades mecânicas nas amostras produzidas quando provenientes da compressão a quente. Já para as tecnologias de produção de CFRT’s, foram estudadas e avaliadas as variáveis de processamento, bem como a melhor combinação entre elas, dos processos de moldação por injeção e por compressão a quente. Quanto às variáveis da compressão a quente, tem maior influência a variável temperatura do molde, sendo que a condição de processamento ideal varia consoante o número de fibras existentes no compósito e das propriedades que se pretende ver satisfeitas. Por último, no que concerne às variáveis da injeção tem maior impacto a segunda pressão. Desta forma, o objetivo principal de desenvolver um processo que permitisse oferecer a possibilidade de impregnar reforços de fibras contínuas em termoplásticos, através da utilização de mantas secas, tem potencial de ser considerada para a produção de um bom produto impregnado com as caraterísticas esperadas. No entanto e apesar de não se ter desenvolvido um processo neste trabalho, é conseguido um caminho com potencial para a definição deste novo processo de produção de CFRT’s.
The present study was aimed to developing a process and a product that offers the possibility to impregnate continuous fiber reinforcements in thermoplastics, through the use of dried layer. To obtain the main objective it was use injection molding and hot compression. In this work we carried out the study and evaluation of materials and technologies already available in the science. A detailed investigation was made by the individual identified several areas: dry reinforcements, impregnated reinforcements and modeling processes. Based on the results of this investigation, it was defined and performed assays were through processing and characterization of the properties of the resulting materials, and were evaluated several solutions and selected the most promising solution. Taking into consideration the key points of development and identified, the project involved a parallel development in two distinct and combined technological areas: materials and production technologies CFRT's, thermoplastic injection molding and hot compression molding. When it is intended to material studied was the capacity of a composite, wherein the matrix - reinforcement corresponding to polypropylene - continuous glass fibers, have superior performance than polymers in its simple form. For this study it was concluded that the composite material in question has, mainly in the processes executed is more efficient than PP, which are higher when the number of layers of fiber are four rather than one or two layers. However were presented mechanical properties when coming from hot compression. As for the production technology of CFRT's, were studied and evaluated the processing variables, as well the best combination of them, of the injection molding and hot compression molding. Regarding the variables of hot compression, the one that has more influence is the mold temperature and the optimum processing condition varies depending on the number of fibers in the composite and the properties that you want to see satisficed. Finally, with regard to the variables of the injection, the greatest impact comes from second pressure. Thus, for the primary purpose of developing a process and a product which allow to offer the possibility of impregnating a continuous fiber reinforcements in thermoplastics, through the use of dried layer, is likely to be considered to the production of a good product impregnated with the expected characteristics. However, although a process was not developed in this work, is achieved a successful way to achieve this new production process CFRT 's.
Book chapters on the topic "Impregnated reinforcement"
Girgis, Mikhail M. "Impregnated Fiber—Glass Yarn for High-Strength Geosynthetic Reinforcement." In ACS Symposium Series, 337–50. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0457.ch022.
Full text"Combination of Carbon Fiber Sheet Molding Compound and Pre-Impregnated, Tailored Carbon Fiber Reinforcements." In Frontiers in Aerospace Science, edited by Marc Fette, Nicole Stöß, Jens Wulfsberg, Axel Herrmann, Gerhard Ziegmann, and Georg Lonsdorfer, 497–514. BENTHAM SCIENCE PUBLISHERS, 2016. http://dx.doi.org/10.2174/9781681083056116010015.
Full textConference papers on the topic "Impregnated reinforcement"
Bordoloi, Sanandam, Deepak Patwa, Rojimul Hussain, Ankit Garg, and S. Sreedeep. "Nano-Particle Coated Natural Fiber Impregnated Soil as a Sustainable Reinforcement Material." In ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482032.044.
Full textKobayashi, Satoshi, and Toshiko Osada. "Experimental and Analytical Resin Impregnation Characterization in Carbon Fiber Reinforced Thermoplastic Composites." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8627.
Full textMurakami, Masuo, Yuqiu Yang, and Hiroyuki Hamada. "Mechanical Properties of Jute/PLA Injection Molded Products-All Natural Composites." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62819.
Full textKikuchi, Tetsuo, Akira Fudauchi, Tetsushi Koshino, Chieko Narita, Atsushi Endo, Yuka Takai, Akihiko Goto, Akio Ohtani, Asami Nakai, and Hiroyuki Hamada. "Mechanical Property of CFRP by Carbon Spray Up Method." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64144.
Full textWang, Y., S. M. Grove, and M. Moatamedi. "Modelling Tow Impregnation of Woven Fabric Reinforcements and Its Application in Liquid Composite Moulding Process Modelling." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61832.
Full textAmin, Anish Ravindra, Yi-Tang Kao, Bruce L. Tai, and Jyhwen Wang. "Dynamic Response of 3D-Printed Bi-Material Structure Using Drop Weight Impact Test." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3061.
Full text