Dissertations / Theses on the topic 'Impulse turbine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 dissertations / theses for your research on the topic 'Impulse turbine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tøndell, Espen. "CO2-expansion work recovery by impulse turbine." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1261.
Full textDahlqvist, Johan. "Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104174.
Full textVaľočík, Jan. "Modernizace VT dílu parní turbiny 300 MW." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231485.
Full textTøndell, Espen. "CO2-expansion work recovery by impulse turbine." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1261.
Full textNytra, Petr. "Retrofit parní turbíny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443171.
Full textSiuda, Radim. "Kondenzační parní turbina." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231428.
Full textSchneider, Abraham 1981. "Dynamic modeling of high-speed impulse turbine with elastomeric bearing supports." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/89911.
Full textVelez, Carlos Alberto Busto. "CFD analysis of a uni-directional impulse turbine for wave energy conversion." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4714.
Full textID: 030646261; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.A.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 81-82).
M.S.A.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Aerospace Engineering; Thermofluid Aerodynamics Systems Track
Novák, Martin. "Retrofit parní turbiny 250 MW na biomasu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230569.
Full textHolt, Daniel B. "Design, fabrication, and testing of a miniature impulse turbine driven by compressed gas /." Online version of thesis, 2004. http://hdl.handle.net/1850/11793.
Full textŘezníček, Ondřej. "Kondenzační parní turbina." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230760.
Full textBenzon, Shaun. "The Turgo impulse turbine : a CFD based approach to the design improvement with experimental validation." Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/82918/.
Full textThe CFD model verification has shown that although the absolute performance of the Turgo system can be modelled numerically to within a good degree of accuracy, it requires combining injector and runner models as well as estimating additional losses in the pipework which can prove time consuming. However for design comparison and optimisations the CFD models have been shown to be far more accurate suggesting that this is where these numerical models are most useful.
Szelecky, Zsolt. "Parní turbína pro spalovnu odpadů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400479.
Full textJeřábek, Lukáš. "Aerodynamický návrh posledního stupně parní turbíny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378638.
Full textKunte, Harald Sebastian [Verfasser]. "Kennfelderweiterung einer supersonischen axialen Impulsturbine durch variable Teilbeaufschlagung : Supersonic axial impulse turbine with variable partial admission for an extended performance map / Harald Sebastian Kunte." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019051602081847925425.
Full textUherek, Jan. "Kondenzační parní turbína pro pohon napájecího čerpadla." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241704.
Full textUrbánek, Martin. "Kondenzační parní turbina s přihříváním." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231387.
Full textO'Dowd, Devin Owen. "Aero-thermal performance of transonic high-pressure turbine blade tips." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:e7b8e7d0-4973-4757-b4df-415723e7562f.
Full textLucas, Simon Charles. "Higher specific speed impulse turbines." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270200.
Full textKracík, Petr. "Kondenzační parní turbina." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229828.
Full textObrlík, Jan. "Turbínový pohon dobíjecí jednotky elektrobusu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319482.
Full textBanks, K. "Optimisation of bidrectional impulse turbines for wve power generation." Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/10691.
Full textBanks, K. "Optimisation of bidirectional impulse turbines for wave power generation." Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/10691.
Full textChan, Godine Kok Yan. "Computation of nonlinear hydrodynamic loads on floating wind turbines using fluid-impulse theory." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104254.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 199-202).
Wind energy is one of the more viable sources of renewable energy and offshore wind turbines represent a promising technology for the cost effective harvesting of this abundant source of energy. To capture wind energy offshore, horizontal-axis wind turbines can be installed on offshore platforms and the study of hydrodynamic loads on these offshore platforms becomes a critical issue for the design of offshore wind turbine systems. A versatile and efficient hydrodynamics module was developed to evaluate the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation - the Fluid Impulse Theory(FIT). The new formulation allows linear and nonlinear loads on floating bodies to be computed in the time domain, and avoids the computationally intensive evaluation of temporal and spatial gradients of the velocity potential in the Bernoulli equation and the discretization of the nonlinear free surface. The module computes linear and nonlinear loads - including hydrostatic, Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause ringing, springing and slow-drift loads - directly in the time domain and a stochastic seastate. The accurate evaluation of nonlinear loads by FIT provides an excellent alternative to existing methods for the safe and cost-effective design of offshore floating wind turbines. The time-domain Green function is used to solve the linear and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently.
by Godine Kok Yan Chan.
Ph. D.
Venturelli, Abram Aldo Salvatore. "Diseño energético de turbina de impulso auto-rectificante de 15 W para ensayos de laboratorio." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2016. http://tesis.pucp.edu.pe/repositorio/handle/123456789/11728.
Full textTesis
CHEN, KAI-WEI, and 陳凱威. "Performance analysis of the impulse turbine in ocean wave energy conversion." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/yswz85.
Full text國立高雄海洋科技大學
造船及海洋工程研究所
105
The ocean surface area is about 70% of the earth and the wave energy is one of the potential energy in the ocean renewable energy. The aim of this paper is to investigate the performance of an impulse turbine driven by the reciprocating air flow for ocean wave energy. Because the impulse turbine rotates in the same direction with reciprocating flow, it is suitable for wave energy conversion. In order to enhance the effect of energy conversion, a pair of guide vanes is installed nearby the inlet and outlet of impulse turbine. Thus, the airflow smoothly enters the impulse blades and enhances the performance and energy conversion efficiency. In the numerical analysis, the computational fluid dynamics (CFD) software ANSYS Fluent is used to calculate the streamlines, the distributions of pressure and velocity near the turbine. The torque of the impulse turbine decreases with the rotating speed, at a fixed velocity of air flow. The preliminary results depict that the improvement of the performance of the turbine with guide vanes is about 153% and the maximal power coefficient is 0.3, as optimal rotating speed is 104.7rad/s. Furthermore, the optimal blade numbers of the guide vane and the turbine are 26 and 30, respectively. The influences of the diameter of turbine, the interspace between of turbine and guide vanes, and the height of the blade are also analyzed. The results further propose a useful foundation to design and develop the impulse turbine in power generation for ocean wave energy conversion.
Po-YingLu and 呂柏穎. "Development of Impulse Wave-Load Model for Offshore Wind Turbine Foundations Induced by Nonlinear Wave Groups." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/3h8kqw.
Full textCiappi, Lorenzo. "Wave-to-wire modelling of oscillating water column wave energy converters and design optimisation for the Mediterranean Sea." Doctoral thesis, 2021. http://hdl.handle.net/2158/1245178.
Full textDurão, Rodrigo Gaspar dos Santos. "Projeto de uma Turbina a Gás - Otimização da Força de Impulso." Master's thesis, 2020. http://hdl.handle.net/10362/114035.
Full textCorreia, Márcio Emanuel Teixeira. "Miniturbina a gás – Escolha da velocidade axial na turbina." Master's thesis, 2019. http://hdl.handle.net/10362/90882.
Full textAlmeida, David Miguel Martins. "Microturbina a gás – Análise das proporções geométricas do compressor e da turbina no desempenho da microturbina." Master's thesis, 2018. http://hdl.handle.net/10362/56418.
Full text