Academic literature on the topic 'In(Ga)As quantum dots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'In(Ga)As quantum dots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "In(Ga)As quantum dots"
HUANG, DAMING, MICHAEL A. RESHCHIKOV, and HADIS MORKOÇ. "GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS." International Journal of High Speed Electronics and Systems 12, no. 01 (March 2002): 79–110. http://dx.doi.org/10.1142/s0129156402001137.
Full textHäusler, I., H. Kirmse, R. Otto, W. Neumann, L. Müller-Kirsch, D. Bimberg, M. Lentzen, and K. Urban. "TEM investigations of Ga(Sb,As) quantum dots grown on a seed layer of (In,Ga)As quantum dots." Microscopy and Microanalysis 9, S03 (September 2003): 212–13. http://dx.doi.org/10.1017/s1431927603022086.
Full textTANG, XIAOHONG, ZONGYOU YIN, and BAOLIN ZHANG. "MOVPE GROWTH OF THE InP BASED MID-IR EMISSION QUANTUM DOT STRUCTURES." Journal of Molecular and Engineering Materials 01, no. 02 (June 2013): 1350002. http://dx.doi.org/10.1142/s2251237313500020.
Full textPorras-Montenegro, N., and S. T. Pe´rez-Merchancano. "Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots." Physical Review B 46, no. 15 (October 15, 1992): 9780–83. http://dx.doi.org/10.1103/physrevb.46.9780.
Full textZabel, T., C. Reuterskiöld Hedlund, O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Ernerheim-Jokumsen, et al. "Auger recombination in In(Ga)Sb/InAs quantum dots." Applied Physics Letters 106, no. 1 (January 5, 2015): 013103. http://dx.doi.org/10.1063/1.4905455.
Full textSergent, S., J. C. Moreno, E. Frayssinet, Y. Laaroussi, S. Chenot, J. Renard, D. Sam-Giao, et al. "GaN quantum dots in (Al,Ga)N-based Microdisks." Journal of Physics: Conference Series 210 (February 1, 2010): 012005. http://dx.doi.org/10.1088/1742-6596/210/1/012005.
Full textChu, L., A. Zrenner, M. Bichler, G. Böhm, and G. Abstreiter. "Raman spectroscopy of In(Ga)As/GaAs quantum dots." Applied Physics Letters 77, no. 24 (December 11, 2000): 3944–46. http://dx.doi.org/10.1063/1.1333398.
Full textElmaghraoui, D., M. Triki, S. Jaziri, G. Muñoz-Matutano, M. Leroux, and J. Martinez-Pastor. "Excitonic complexes in GaN/(Al,Ga)N quantum dots." Journal of Physics: Condensed Matter 29, no. 10 (February 1, 2017): 105302. http://dx.doi.org/10.1088/1361-648x/aa57d5.
Full textДеребезов, И. А., В. А. Гайслер, А. В. Гайслер, Д. В. Дмитриев, А. И. Торопов, M. von Helversen, C. de la Haye, S. Bounouar, and S. Reitzenstein. "Неклассические источники света на основе селективно позиционированных микролинзовых структур и (111) In(Ga)As квантовых точек." Физика и техника полупроводников 53, no. 10 (2019): 1338. http://dx.doi.org/10.21883/ftp.2019.10.48286.32.
Full textHe, Xiaowu, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, et al. "Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots." Journal of Semiconductors 40, no. 7 (July 2019): 071902. http://dx.doi.org/10.1088/1674-4926/40/7/071902.
Full textDissertations / Theses on the topic "In(Ga)As quantum dots"
Auer, Thomas. "The electron nuclear spin system in (In,Ga)As quantum dots." Göttingen Sierke, 2008. http://d-nb.info/990846938/04.
Full textKettler, Jan [Verfasser]. "Telecom-wavelength nonclassical light from single In(Ga)As quantum dots / Jan Kettler." München : Verlag Dr. Hut, 2017. http://d-nb.info/1128466880/34.
Full textHatami, Fariba. "Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14873.
Full textThe growth and structural properties of self-assembled InP quantum dots are presented and discussed, together with their optical properties and associated carrier dynamics. The QDs are grown using gas-source molecular-beam epitaxy in and on the two materials InGaP (lattice matched to GaAs) and GaP. Under the proper growth conditions, formation of InP dots via the Stranski-Krastanow mechanism is observed. The critical InP coverage for 2D-3D transition is found to be 3ML for the InP/ InGaP system and 1.8ML for the InP/GaP system. The structural characterization indicates that the InP/GaP QDs are larger and, consequently, less dense compared to the InP/ InGaP QDs; hence, InP dots on GaP tend to be strain-relaxed. The InP/ InGaP QDs tend to form ordered arrays when InP coverage is increased. Intense photoluminescence from InP quantum dots in both material systems is observed. The PL from InP/GaP QDs peaks between 1.9 and 2 eV and is by about 200 meV higher in energy than the PL line from InP/ InGaP QDs. The optical emission from dots is attributed to direct transitions between the electrons and heavy-holes confined in the InP dots, whereas the photoluminescence from a two-dimensional InP layer embedded in GaP is explained as resulting from the spatially indirect recombination of electrons from the GaP X valleys with holes in InP and their phonon replicas. The type-II band alignment of InP/GaP two-dimensional structures is further confirmed by the carrier lifetime above 19 ns, which is much higher than in type-I systems. The observed carrier lifetimes of 100-500 ps for InP/ InGaPQDs and 2 ns for InP/GaP QDs support our band alignment modeling. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP QDs at normal pressure, but indicate that they become type-II under hydrostatic pressures of about 1.2 GPa and are consistent with an energy difference between the lowest InP and GaP states of about 31 meV. Exploiting the visible direct-bandgap transition in the GaP system could lead to an increased efficiency of light emission in GaP-based light emitters.
Kettler, Jan Ferdinand [Verfasser]. "Telecom-wavelength nonclassical light from single In(Ga)As quantum dots / Jan Kettler." München : Verlag Dr. Hut, 2017. http://d-nb.info/1128466880/34.
Full textYu, Kuan-Hung. "Optical Spectroscopy of GaN/Al(Ga)N Quantum Dots Grown by Molecular Beam Epitaxy." Thesis, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19821.
Full textGaN quantum dots grown by molecular beam epitaxy are examined by micro-photoluminescence. The exciton and biexciton emission are identified successfully by power-dependence measurement. With two different samples, it can be deduced that the linewidth of the peaks is narrower in the thicker deposited layer of GaN. The size of the GaN quantum dots is responsible for the binding energy of biexciton (EbXX); EbXX decreases with increasing size of GaN quantum dots. Under polarization studies, polar plot shows that emission is strongly linear polarized. In particular, the orientation of polarization vector is not related to any specific crystallography orientation. The polarization splitting of fine-structure is not able to resolve due to limited resolution of the system. The emission peaks can be detected up to 80 K. The curves of transition energy with respect to temperature are S-shaped. Strain effect and screening of electric field account for blueshift of transition energy, whereas Varshni equation stands for redshifting. Both blueshifting and redshifting are compensated at temperature ranging from 4 K to 40 K.
Rolihlahla, Bangile Noel. "Electrochemistry and photophysics of carbon nanodots-decorated nigs(Ni(In, Ga)Se2) quantum dots." university of western cape, 2020. http://hdl.handle.net/11394/7309.
Full textCurrently, non-renewable sources are mostly used to meet the ever-growing demand for energy. However, these sources are not sustainable. In addition to these energy sources being not sustainable, they are bad for the environment although the energy supply sectors highly depend on them. To address such issues the use of renewable energy sources has been proven to be beneficial for the supply of energy for the global population and its energy needs. Advantageous over non-renewable sources, renewable energy plays a crucial role in minimizing the use of fossil fuel and reduces greenhouse gases. Minimizing use of fossil fuels and greenhouse gases is important, because it helps in the fight against climate change. The use of renewable energy sources can also lead to less air pollution and improved air quality. Although solar energy is the most abundant source of renewable energy that can be converted into electrical energy using various techniques, there are some limitations. Among these techniques are photovoltaic cells which are challenged by low efficiencies and high costs of material fabrication. Hence, current research and innovations are sought towards the reduction of costs and increasing the efficiency of the renewable energy conversion devices.
Paul, Matthias [Verfasser]. "Fabrication, Characterization, and Integration of In(Ga)As Semiconductor Quantum Dots for Telecommunication Wavelengths / Matthias Paul." München : Verlag Dr. Hut, 2016. http://d-nb.info/1113335726/34.
Full textSandall, Ian C. "Characterisation of In(Ga)As quantum dot lasers." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56130/.
Full textParnell, Steven Richard. "A study of the optical and structural properties of self-organised In(Ga)As/GaAs quantum dots." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269285.
Full textBommer, Moritz [Verfasser]. "InP/(Al,Ga)InP Quantum Dots on GaAs- and Si-Substrates for Single-Photon Generation at Elevated Temperatures / Moritz Bommer." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308225/34.
Full textBooks on the topic "In(Ga)As quantum dots"
Jacak, Lucjan, Arkadiusz Wójs, and Paweł Hawrylak. Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72002-4.
Full textFontes, Adriana, and Beate S. Santos, eds. Quantum Dots. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2.
Full textTartakovskii, Alexander, ed. Quantum Dots. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511998331.
Full textMarcel, Bruchez, and Hotz Z. Charles. Quantum Dots. New Jersey: Humana Press, 2006. http://dx.doi.org/10.1385/1597453692.
Full textKlimov, Victor I. Nanocrystal quantum dots. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textZhou, Ye, and Yan Wang, eds. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.
Full textJelinek, Raz. Carbon Quantum Dots. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43911-2.
Full textMasumoto, Yasuaki, and Toshihide Takagahara, eds. Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9.
Full textGüçlü, Alev Devrim, Pawel Potasz, Marek Korkusinski, and Pawel Hawrylak. Graphene Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44611-9.
Full textBook chapters on the topic "In(Ga)As quantum dots"
Marcinkevičius, Saulius. "Dynamics of Carrier Transfer into In(Ga)As Self-assembled Quantum Dots." In Self-Assembled Quantum Dots, 129–63. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74191-8_5.
Full textSotomayor Torres, C. M., P. D. Wang, H. Benisty, and C. Weisbuch. "Luminescence and Raman Scattering Studies of Ga-As-AlGaAs Quantum Dots." In Low-Dimensional Electronic Systems, 289–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84857-5_29.
Full textBayer, Manfred. "Exciton Complexes in Self-Assembled In(Ga)As/GaAs Quantum Dots." In Topics in Applied Physics, 93–146. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39180-7_3.
Full textBorri, Paola, and Wolfgang Langbein. "Dephasing Processes and Carrier Dynamics in (In,Ga)As Quantum Dots." In Topics in Applied Physics, 237–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39180-7_6.
Full textAdhikary, Sourav, and Subhananda Chakrabarti. "Structural and Optical Characterization of Quaternary-Capped InAs/GaAs Quantum Dots." In Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors, 11–21. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5290-3_2.
Full textGreilich, A., D. R. Yakovlev, M. Bayer, A. Shabaev, and Al L. Efros. "Electron-Spin Dynamics in Self-Assembled (In,Ga)As/GaAs Quantum Dots." In Topics in Applied Physics, 51–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79365-6_4.
Full textUstinov, V. M., A. E. Zhukov, A. Yu Egorov, N. N. Lendentsov, M. V. Maksimov, A. F. Tsatsul’nikov, P. S. Kop’ev, D. Bimberg, and Zh I. Alferov. "MBE Growth of (In,Ga)As Self-Assembled Quantum Dots for Optoeletronic Applications." In Devices Based on Low-Dimensional Semiconductor Structures, 91–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0289-3_5.
Full textToda, Y., and Y. Arakawa. "Optical Characterization of In(Ga)As/GaAs Self-assembled Quantum Dots Using Near-Field Spectroscopy." In Progress in Nano-Electro-Optics I, 83–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-46023-7_4.
Full textPatel, N. K., T. J. B. M. Janssen, J. Singleton, M. Pepper, H. Ahmed, D. G. Hasko, R. J. Brown, et al. "Far-Infrared Transmission of Voltage-Tunable GaAs-(Ga,Al)As Quantum Dots in High Magnetic Fields." In Springer Series in Solid-State Sciences, 339–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_48.
Full textAdhikary, Sourav, and Subhananda Chakrabarti. "Effect of Rapid-Thermal Annealing on Quantum Dot Properties." In Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors, 23–31. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5290-3_3.
Full textConference papers on the topic "In(Ga)As quantum dots"
Sears, K., S. Mokkapati, M. Buda, H. H. Tan, and C. Jagadish. "In(Ga)As/GaAs quantum dots for optoelectronic devices." In Smart Materials, Nano- and Micro-Smart Systems, edited by Jung-Chih Chiao, Andrew S. Dzurak, Chennupati Jagadish, and David V. Thiel. SPIE, 2006. http://dx.doi.org/10.1117/12.706526.
Full textBhattacharya, Pallab, Theodore B. Norris, Jasprit Singh, and Junji Urayama. "Carrier dynamics in In(Ga)As/Ga(Al)As self-organized quantum dots." In Symposium on Integrated Optoelectronic Devices, edited by James A. Lott, Nikolai N. Ledentsov, Kevin J. Malloy, Bruce E. Kane, and Thomas W. Sigmon. SPIE, 2002. http://dx.doi.org/10.1117/12.460810.
Full textMueller, T., T. Moldaschl, S. Golka, G. Strasser, and K. Unterrainer. "Acoustic phonon damping of Rabi oscillations in In(Ga)As quantum dots." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431563.
Full textRichter, Johannes, Johannes Strassner, Thomas Loeber, and Henning Fouckhardt. "Ga(As)Sb/GaAs quantum dots for emission around 1300 nm." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6800936.
Full textNakaoka, T. "Characterization of g-Factors in Various In(Ga)As Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994319.
Full textKumar, Ravinder, Debiprasad Panda, Debabrata Das, Vinayak Chavan, Raman Kumar, Subhananda Chakrabarti, and Sreedhara Sheshadri. "Analysis of strain relaxation and dark current minimization in In(Ga)As QDIP with In0.15Ga0.85As/GaAs capping." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2019. http://dx.doi.org/10.1117/12.2508467.
Full textLoeber, Thomas Henning, Johannes Strassner, Sandra Wolff, Bert Laegel, and Henning Foukhardt. "Highly ordered Ga(As)Sb quantum dots grown on pre-structured GaAs." In SPIE OPTO, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2017. http://dx.doi.org/10.1117/12.2252221.
Full textSek, G., K. Ryczko, Jan Misiewicz, M. Bayer, Frank Klopf, Johann-Peter Reithmaier, and Alfred W. B. Forchel. "Coupled In 0.6 Ga 0.4 As/GaAs quantum dots: a photoreflectance study." In International Conference on Solid State Crystals 2000, edited by Jaroslaw Rutkowski, Jakub Wenus, and Leszek Kubiak. SPIE, 2001. http://dx.doi.org/10.1117/12.425417.
Full textUlrich, S. M. "Single-Photon And Photon Pair Emission From Individual (In,Ga)As Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994280.
Full textMejía-Salazar, J. R., N. Porras-Montenegro, J. Darío Perea, Marília Caldas, and Nelson Studart. "The electron Landé g-factor in GaAs-(Ga, Al)As cylindrical quantum dots." In PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors. AIP, 2010. http://dx.doi.org/10.1063/1.3295507.
Full textReports on the topic "In(Ga)As quantum dots"
Towe, E., G. Stoleru, and D. Pal. Self-Assembled (In,Ga)As/GaAs Quantum-Dot Nanostructures: Strain Distribution and Electronic Structure. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada395570.
Full textCEDERBERG, JEFFREY G., ROBERT M. BIEFELD, H. C. SCHNEIDER, and WENG W. CHOW. Growth and Characterization of Quantum Dots and Quantum Dots Devices. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810938.
Full textSteel, Duncan G., and Lu J. Sham. Optically Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435727.
Full textSham, Lu J. Raman-Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447067.
Full textBrickson, Mitchell Ian, and Andrew David Baczewski. Lithographic quantum dots for quantum computation and quantum simulation. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592975.
Full textSpeck, James S., and Pierre M. Petroff. Order Lattices of Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada427868.
Full textLevy, Jeremy, Hrvoje Petek, Hong K. Kim, and Sanford Asher. Quantum Information Processing with Ferroelectrically Coupled Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada545675.
Full textSteel, Duncan G., and L. J. Sham. Optically Driven Spin Based Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada519735.
Full textPrather, Dennis W. Millimeter Wave Modulators Using Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada494764.
Full textSteel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413562.
Full text