Academic literature on the topic 'In(Ga)As quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'In(Ga)As quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "In(Ga)As quantum dots"

1

HUANG, DAMING, MICHAEL A. RESHCHIKOV, and HADIS MORKOÇ. "GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS." International Journal of High Speed Electronics and Systems 12, no. 01 (March 2002): 79–110. http://dx.doi.org/10.1142/s0129156402001137.

Full text
Abstract:
This article reviews the advances in the growth of III-nitride quantum dots achieved in the last few years and their unique properties. The growth techniques and the strcutural and optical properties associated with quantum confinement, strain, and polarization in GaN/Al x Ga 1-x N and In x Ga 1-x N/GaN quantum dots are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
2

Häusler, I., H. Kirmse, R. Otto, W. Neumann, L. Müller-Kirsch, D. Bimberg, M. Lentzen, and K. Urban. "TEM investigations of Ga(Sb,As) quantum dots grown on a seed layer of (In,Ga)As quantum dots." Microscopy and Microanalysis 9, S03 (September 2003): 212–13. http://dx.doi.org/10.1017/s1431927603022086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TANG, XIAOHONG, ZONGYOU YIN, and BAOLIN ZHANG. "MOVPE GROWTH OF THE InP BASED MID-IR EMISSION QUANTUM DOT STRUCTURES." Journal of Molecular and Engineering Materials 01, no. 02 (June 2013): 1350002. http://dx.doi.org/10.1142/s2251237313500020.

Full text
Abstract:
In this paper, semiconductor quantum dot structures for mid-infrared emission were self-assembled on InP substrate by using metal–organic vapor phase epitaxy growth. The InAs quantum dots grown at different conditions have been investigated. To improve the grown quantum dot's shape, the dot density and the dot size uniformity, a two-step growth method has been used and investigated. By changing the composition of the In x Ga 1-x As matrix layer of the InAs / In x Ga 1-x As / InP quantum dot structure, emission wavelength of the InAs quantum dot structure has been extended to the longest > 2.35 μm measured at 77 K. For the narrower bandgap semiconductor InAsSb quantum dots, the emission wavelength was measured at > 2.8 μm.
APA, Harvard, Vancouver, ISO, and other styles
4

Porras-Montenegro, N., and S. T. Pe´rez-Merchancano. "Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots." Physical Review B 46, no. 15 (October 15, 1992): 9780–83. http://dx.doi.org/10.1103/physrevb.46.9780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zabel, T., C. Reuterskiöld Hedlund, O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Ernerheim-Jokumsen, et al. "Auger recombination in In(Ga)Sb/InAs quantum dots." Applied Physics Letters 106, no. 1 (January 5, 2015): 013103. http://dx.doi.org/10.1063/1.4905455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sergent, S., J. C. Moreno, E. Frayssinet, Y. Laaroussi, S. Chenot, J. Renard, D. Sam-Giao, et al. "GaN quantum dots in (Al,Ga)N-based Microdisks." Journal of Physics: Conference Series 210 (February 1, 2010): 012005. http://dx.doi.org/10.1088/1742-6596/210/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chu, L., A. Zrenner, M. Bichler, G. Böhm, and G. Abstreiter. "Raman spectroscopy of In(Ga)As/GaAs quantum dots." Applied Physics Letters 77, no. 24 (December 11, 2000): 3944–46. http://dx.doi.org/10.1063/1.1333398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elmaghraoui, D., M. Triki, S. Jaziri, G. Muñoz-Matutano, M. Leroux, and J. Martinez-Pastor. "Excitonic complexes in GaN/(Al,Ga)N quantum dots." Journal of Physics: Condensed Matter 29, no. 10 (February 1, 2017): 105302. http://dx.doi.org/10.1088/1361-648x/aa57d5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Деребезов, И. А., В. А. Гайслер, А. В. Гайслер, Д. В. Дмитриев, А. И. Торопов, M. von Helversen, C. de la Haye, S. Bounouar, and S. Reitzenstein. "Неклассические источники света на основе селективно позиционированных микролинзовых структур и (111) In(Ga)As квантовых точек." Физика и техника полупроводников 53, no. 10 (2019): 1338. http://dx.doi.org/10.21883/ftp.2019.10.48286.32.

Full text
Abstract:
Hybrid microcavity for single quantum dot based emitters has been developed and realized. The microcavity consists of semiconductor distributed Bragg reflector and microlens, which is selectively positioned over a single (111) In(Ga)As quantum dot. We have demonstrated pure single photon emission with g(2)(0) = 0.07. The fine structure of exciton states of (111) In(Ga)As quantum dots is studied. It is shown that the splitting of exciton states is comparable with the natural width of exciton lines, which is of great interest for the design of emitters of pairs of entangled photons on the basis of these quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
10

He, Xiaowu, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, et al. "Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots." Journal of Semiconductors 40, no. 7 (July 2019): 071902. http://dx.doi.org/10.1088/1674-4926/40/7/071902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "In(Ga)As quantum dots"

1

Auer, Thomas. "The electron nuclear spin system in (In,Ga)As quantum dots." Göttingen Sierke, 2008. http://d-nb.info/990846938/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kettler, Jan [Verfasser]. "Telecom-wavelength nonclassical light from single In(Ga)As quantum dots / Jan Kettler." München : Verlag Dr. Hut, 2017. http://d-nb.info/1128466880/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hatami, Fariba. "Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14873.

Full text
Abstract:
Im Rahmen dieser Arbeit wurden selbstorganisierte, verspannte InP-Quantenpunkte mittels Gasquellen-Molekularstrahlepitaxie hergestellt und deren strukturelle und optische Eigenschaften untersucht. Die Quantenpunkte wurden sowohl in InGaP-Matrix gitterangepasst auf GaAs-Substrat als auch in GaP-Matrix auf GaP-Substrat realisiert. Die starke Gitterfehlanpassung von 3,8% im InP/InGaP- bzw. 7,7% im InP/GaP-Materialsystem ermöglicht Inselbildung mittels des Stranski-Krastanow-Wachstumsmodus: Ab einer kritischen InP-Schichtdicke findet kein zweidimensionales, sondern ein dreidimensionales Wachstum statt. Die kritische Schichtdicke wurde mit etwa 3 Monolagen für das InP/InGaP- und mit etwa 1,8 Monolagen für das InP/GaP-System bestimmt. Die strukturellen Untersuchungen zeigen, dass InP Quantenpunkte in GaP im Vergleich zu solchen in InGaP größer sind und stärker zum Abbau von Verspannung tendieren. Die in InGaP-Matrix eingebettete InP-Quantenpunkte zeigen sehr ausgeprägte optische Emissionen, die, in Abhängigkeit von den Wachstumsparametern, im Bereich von 1,6 bis 1,75eV liegen. Die Emissionslinie wird der strahlenden Rekombination von in den Quantenpunkten lokalisierten Elektronen und Löchern zugeordnet. Dies wird auch durch das Bänderschema bestätigt, das mit Hilfe der Model-Solid-Theorie modelliert wurde. Darüber hinaus weist die Lebensdauer der Ladungsträger von einigen hundert Pikosekunden darauf hin, dass die InP/InGaP Quantenpunkte vom Typ I sind. Zusätzlich zu den optischen Eigenschaften wurde die Anordnung von dicht gepackten InP-Quantenpunkten in und auf InGaP mittels zweidimensionaler Fourier-Transformation der Daten aus der Atomkraftmikroskopie, Transmissionelektronmikroskopie und diverser Röntgen-Streuexperimente untersucht sowie die planaren und vertikale Ordnungseffekte der Quantenpunkte studiert. Die Untersuchungen zeigen, dass die Ordnung der Quantenpunkte sowohl hinsichtlich ihrer Packungsdichte als auch ihrer Orientierung mit wachsender InP-Bedeckung zunimmt. Darüber hinaus wurde die Verspannungsverteilung in den InP/InGaP-Quantenpunkten mit Hilfe von diffuser Röntgen-Streuung in Verbindung mit kinematischen Simulationen studiert und eine asymmetrische Form der Quantenpunkte festgestellt, die auch Ursache für die gemessene Polarisationsanisotropie der Photolumineszenz sein kann. Die in GaP-Matrix eingebetteten InP-Quantenpunkte wurden im Rahmen dieser Arbeit erstmals erfolgreich auf ihre aktiven optischen Eigenschaften hin untersucht. Sie zeigen eine optische Emission zwischen 1,9 und 2 eV im sichtbaren Bereich. Diese strahlende Rekombination wird ebenfalls dem direkten Übergang zwischen Elektronen- und Löcherzuständen zugeordnet, die in den InP Quantenpunkten lokalisiert sind. Auch Photolumineszenzmessungen unter mechanischem Druck weisen darauf hin, dass es sich in diesem System hauptsächlich um einen direkten räumlichen Übergang handelt. Dieses Ergebnis wird dadurch untermauert, dass die Lebensdauer der Ladungsträger im Bereich von etwa 2 ns liegt, was nicht untypisch für Typ-I-Systeme ist. Die Ergebnisse für zweidimensionale, in GaP eingebettete InP-Schichten zeigen im Gegensatz zu den Quantenpunkten, dass die strahlende Rekombination in InP/GaP Quantentöpfen aufgrund eines indirekten Übergangs (sowohl in Orts- als auch in Impulsraum) zwischen Elektronen- und Löcherzuständen erfolgt. Die optischen Emissionslinien liegen für Quantentöpfe im Bereich von 2,15 bis 2,30eV. Die nachgewiesene sehr lange Lebensdauer der Ladungsträger von etwa 20ns weist weiter darauf hin, dass die Quantentöpfe ein Typ-II-System sind. Nach Modellierung des Bänderschemas für das verspannte InP/GaP-System und Berechnung der Energieniveaus von Löchern und Elektronen darin mit Hilfe der Effektive-Masse-Näherung in Abhängigkeit von der InP-Schichtdicke zeigt sich ferner, dass für InP-Quantentöpfe mit einer Breite kleiner als 3nm die Quantisierungsenergie der Elektronen so groß ist, dass der X-Punkt in GaP energetisch tiefer liegt als der Gamma-Punkt in InP. Dieser Potentialverlauf führt dazu , dass die Elektronen im X-Minimum des GaP lokalisieren, während die Löcher in der InP-Schicht bleiben. Optische Untersuchungen nach thermischer Behandlung der Quantenpunkte führen sowohl im InP/InGaP- als auch im InP/GaP-System zur Verstärkung der Lumineszenz, die bis zu 15 mal internsiver als bei unbehandelten Proben sein kann. Insgesamt zeigt diese Arbeit, dass InP-Quantenpunkte durch ihre optischen Eigenschaften sehr interessant für optoelektronische Anwendungen sind. Die Verwendung von durchsichtigem GaP (mit einer größeren Bandlücke und kleineren Gitterkonstante im Vergleich zu GaAs und InGaP) als Matrix und Substrat hat nicht nur den Vorteil, dass die InP-Quantenpunkte hierbei im sichtbaren Bereich Licht emittieren, sondern man kann in der Praxis auch von einer hochentwickelten GaP-basierten LED-Technologie profitieren. Hauptergebnis dieser Arbeit ist, dass die in indirektes GaP eingebetteten InP-Quantenpunkte aktive optische Eigenschaften zeigen. Sie können daher als aktive Medien zur Realisierung neuartiger effizienter Laser und Leuchtdioden verwendet werden.
The growth and structural properties of self-assembled InP quantum dots are presented and discussed, together with their optical properties and associated carrier dynamics. The QDs are grown using gas-source molecular-beam epitaxy in and on the two materials InGaP (lattice matched to GaAs) and GaP. Under the proper growth conditions, formation of InP dots via the Stranski-Krastanow mechanism is observed. The critical InP coverage for 2D-3D transition is found to be 3ML for the InP/ InGaP system and 1.8ML for the InP/GaP system. The structural characterization indicates that the InP/GaP QDs are larger and, consequently, less dense compared to the InP/ InGaP QDs; hence, InP dots on GaP tend to be strain-relaxed. The InP/ InGaP QDs tend to form ordered arrays when InP coverage is increased. Intense photoluminescence from InP quantum dots in both material systems is observed. The PL from InP/GaP QDs peaks between 1.9 and 2 eV and is by about 200 meV higher in energy than the PL line from InP/ InGaP QDs. The optical emission from dots is attributed to direct transitions between the electrons and heavy-holes confined in the InP dots, whereas the photoluminescence from a two-dimensional InP layer embedded in GaP is explained as resulting from the spatially indirect recombination of electrons from the GaP X valleys with holes in InP and their phonon replicas. The type-II band alignment of InP/GaP two-dimensional structures is further confirmed by the carrier lifetime above 19 ns, which is much higher than in type-I systems. The observed carrier lifetimes of 100-500 ps for InP/ InGaPQDs and 2 ns for InP/GaP QDs support our band alignment modeling. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP QDs at normal pressure, but indicate that they become type-II under hydrostatic pressures of about 1.2 GPa and are consistent with an energy difference between the lowest InP and GaP states of about 31 meV. Exploiting the visible direct-bandgap transition in the GaP system could lead to an increased efficiency of light emission in GaP-based light emitters.
APA, Harvard, Vancouver, ISO, and other styles
4

Kettler, Jan Ferdinand [Verfasser]. "Telecom-wavelength nonclassical light from single In(Ga)As quantum dots / Jan Kettler." München : Verlag Dr. Hut, 2017. http://d-nb.info/1128466880/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Kuan-Hung. "Optical Spectroscopy of GaN/Al(Ga)N Quantum Dots Grown by Molecular Beam Epitaxy." Thesis, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19821.

Full text
Abstract:

GaN quantum dots grown by molecular beam epitaxy are examined by micro-photoluminescence. The exciton and biexciton emission are identified successfully by power-dependence measurement. With two different samples, it can be deduced that the linewidth of the peaks is narrower in the thicker deposited layer of GaN. The size of the GaN quantum dots is responsible for the binding energy of biexciton (EbXX); EbXX decreases with increasing size of GaN quantum dots. Under polarization studies, polar plot shows that emission is strongly linear polarized. In particular, the orientation of polarization vector is not related to any specific crystallography orientation. The polarization splitting of fine-structure is not able to resolve due to limited resolution of the system. The emission peaks can be detected up to 80 K. The curves of transition energy with respect to temperature are S-shaped. Strain effect and screening of electric field account for  blueshift of transition energy, whereas Varshni equation stands for redshifting. Both blueshifting and redshifting are compensated at temperature ranging from 4 K to 40 K.

APA, Harvard, Vancouver, ISO, and other styles
6

Rolihlahla, Bangile Noel. "Electrochemistry and photophysics of carbon nanodots-decorated nigs(Ni(In, Ga)Se2) quantum dots." university of western cape, 2020. http://hdl.handle.net/11394/7309.

Full text
Abstract:
>Magister Scientiae - MSc
Currently, non-renewable sources are mostly used to meet the ever-growing demand for energy. However, these sources are not sustainable. In addition to these energy sources being not sustainable, they are bad for the environment although the energy supply sectors highly depend on them. To address such issues the use of renewable energy sources has been proven to be beneficial for the supply of energy for the global population and its energy needs. Advantageous over non-renewable sources, renewable energy plays a crucial role in minimizing the use of fossil fuel and reduces greenhouse gases. Minimizing use of fossil fuels and greenhouse gases is important, because it helps in the fight against climate change. The use of renewable energy sources can also lead to less air pollution and improved air quality. Although solar energy is the most abundant source of renewable energy that can be converted into electrical energy using various techniques, there are some limitations. Among these techniques are photovoltaic cells which are challenged by low efficiencies and high costs of material fabrication. Hence, current research and innovations are sought towards the reduction of costs and increasing the efficiency of the renewable energy conversion devices.
APA, Harvard, Vancouver, ISO, and other styles
7

Paul, Matthias [Verfasser]. "Fabrication, Characterization, and Integration of In(Ga)As Semiconductor Quantum Dots for Telecommunication Wavelengths / Matthias Paul." München : Verlag Dr. Hut, 2016. http://d-nb.info/1113335726/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sandall, Ian C. "Characterisation of In(Ga)As quantum dot lasers." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56130/.

Full text
Abstract:
Self-assembled InAs quantum dot lasers have been characterised by measuring the modal absorption and gain along with radiative and non-radiative current densities as well as determining threshold current densities as a function of length. The number of dot layers stacked and the GaAs spacer layers used are both shown to influence the dot density and distribution. The peak ground state gain is found to saturate at around a third of the available absorption in intrinsic quantum dot samples (reaching a value of 1.2 0.2 cm"1 per layer). The 'average spontaneous lifetime of a single dot is determined from measurements of the optical cross section (yielding a value of 2.0 0.5 ns). From the lifetime measurements, the number of dots occupied at a given injection has been determined this has shown that gain saturation in quantum dot lasers is due to the incomplete filling of states. The occupancy is shown to increase with the inclusion of p- type modulation doping (from 31% for an intrinsic structure to 43 % and 51 % for doping levels of 15 and 50-p dopants per dot respectively), hence increasing the available ground state gain to 2.2 cm"1 per layer for 50 dopants per dot. In some of the samples studied the use of modulation doping has been shown to lead to an increase in the non-radiative current density. The temperature dependence of the threshold current density in InAs quantum dot lasers is also investigated. It is found that in the p-doped structures the threshold current shows an initial decrease in the threshold current, before increasing at higher temperatures (for example a decrease of lOOAcm" occurs between 180 and 290 K for a 2 mm long cavity with 15-p dopants per dot), this is shown to originate from the temperature dependence of the modal gain in these structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Parnell, Steven Richard. "A study of the optical and structural properties of self-organised In(Ga)As/GaAs quantum dots." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bommer, Moritz [Verfasser]. "InP/(Al,Ga)InP Quantum Dots on GaAs- and Si-Substrates for Single-Photon Generation at Elevated Temperatures / Moritz Bommer." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308225/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "In(Ga)As quantum dots"

1

Jacak, Lucjan. Quantum dots. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacak, Lucjan, Arkadiusz Wójs, and Paweł Hawrylak. Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72002-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fontes, Adriana, and Beate S. Santos, eds. Quantum Dots. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tartakovskii, Alexander, ed. Quantum Dots. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511998331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marcel, Bruchez, and Hotz Z. Charles. Quantum Dots. New Jersey: Humana Press, 2006. http://dx.doi.org/10.1385/1597453692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klimov, Victor I. Nanocrystal quantum dots. 2nd ed. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Ye, and Yan Wang, eds. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jelinek, Raz. Carbon Quantum Dots. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43911-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masumoto, Yasuaki, and Toshihide Takagahara, eds. Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Güçlü, Alev Devrim, Pawel Potasz, Marek Korkusinski, and Pawel Hawrylak. Graphene Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44611-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "In(Ga)As quantum dots"

1

Marcinkevičius, Saulius. "Dynamics of Carrier Transfer into In(Ga)As Self-assembled Quantum Dots." In Self-Assembled Quantum Dots, 129–63. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74191-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sotomayor Torres, C. M., P. D. Wang, H. Benisty, and C. Weisbuch. "Luminescence and Raman Scattering Studies of Ga-As-AlGaAs Quantum Dots." In Low-Dimensional Electronic Systems, 289–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84857-5_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bayer, Manfred. "Exciton Complexes in Self-Assembled In(Ga)As/GaAs Quantum Dots." In Topics in Applied Physics, 93–146. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39180-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borri, Paola, and Wolfgang Langbein. "Dephasing Processes and Carrier Dynamics in (In,Ga)As Quantum Dots." In Topics in Applied Physics, 237–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39180-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adhikary, Sourav, and Subhananda Chakrabarti. "Structural and Optical Characterization of Quaternary-Capped InAs/GaAs Quantum Dots." In Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors, 11–21. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5290-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greilich, A., D. R. Yakovlev, M. Bayer, A. Shabaev, and Al L. Efros. "Electron-Spin Dynamics in Self-Assembled (In,Ga)As/GaAs Quantum Dots." In Topics in Applied Physics, 51–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79365-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ustinov, V. M., A. E. Zhukov, A. Yu Egorov, N. N. Lendentsov, M. V. Maksimov, A. F. Tsatsul’nikov, P. S. Kop’ev, D. Bimberg, and Zh I. Alferov. "MBE Growth of (In,Ga)As Self-Assembled Quantum Dots for Optoeletronic Applications." In Devices Based on Low-Dimensional Semiconductor Structures, 91–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0289-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Toda, Y., and Y. Arakawa. "Optical Characterization of In(Ga)As/GaAs Self-assembled Quantum Dots Using Near-Field Spectroscopy." In Progress in Nano-Electro-Optics I, 83–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-46023-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Patel, N. K., T. J. B. M. Janssen, J. Singleton, M. Pepper, H. Ahmed, D. G. Hasko, R. J. Brown, et al. "Far-Infrared Transmission of Voltage-Tunable GaAs-(Ga,Al)As Quantum Dots in High Magnetic Fields." In Springer Series in Solid-State Sciences, 339–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adhikary, Sourav, and Subhananda Chakrabarti. "Effect of Rapid-Thermal Annealing on Quantum Dot Properties." In Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors, 23–31. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5290-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "In(Ga)As quantum dots"

1

Sears, K., S. Mokkapati, M. Buda, H. H. Tan, and C. Jagadish. "In(Ga)As/GaAs quantum dots for optoelectronic devices." In Smart Materials, Nano- and Micro-Smart Systems, edited by Jung-Chih Chiao, Andrew S. Dzurak, Chennupati Jagadish, and David V. Thiel. SPIE, 2006. http://dx.doi.org/10.1117/12.706526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharya, Pallab, Theodore B. Norris, Jasprit Singh, and Junji Urayama. "Carrier dynamics in In(Ga)As/Ga(Al)As self-organized quantum dots." In Symposium on Integrated Optoelectronic Devices, edited by James A. Lott, Nikolai N. Ledentsov, Kevin J. Malloy, Bruce E. Kane, and Thomas W. Sigmon. SPIE, 2002. http://dx.doi.org/10.1117/12.460810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mueller, T., T. Moldaschl, S. Golka, G. Strasser, and K. Unterrainer. "Acoustic phonon damping of Rabi oscillations in In(Ga)As quantum dots." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Richter, Johannes, Johannes Strassner, Thomas Loeber, and Henning Fouckhardt. "Ga(As)Sb/GaAs quantum dots for emission around 1300 nm." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6800936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakaoka, T. "Characterization of g-Factors in Various In(Ga)As Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Ravinder, Debiprasad Panda, Debabrata Das, Vinayak Chavan, Raman Kumar, Subhananda Chakrabarti, and Sreedhara Sheshadri. "Analysis of strain relaxation and dark current minimization in In(Ga)As QDIP with In0.15Ga0.85As/GaAs capping." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2019. http://dx.doi.org/10.1117/12.2508467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Loeber, Thomas Henning, Johannes Strassner, Sandra Wolff, Bert Laegel, and Henning Foukhardt. "Highly ordered Ga(As)Sb quantum dots grown on pre-structured GaAs." In SPIE OPTO, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2017. http://dx.doi.org/10.1117/12.2252221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sek, G., K. Ryczko, Jan Misiewicz, M. Bayer, Frank Klopf, Johann-Peter Reithmaier, and Alfred W. B. Forchel. "Coupled In 0.6 Ga 0.4 As/GaAs quantum dots: a photoreflectance study." In International Conference on Solid State Crystals 2000, edited by Jaroslaw Rutkowski, Jakub Wenus, and Leszek Kubiak. SPIE, 2001. http://dx.doi.org/10.1117/12.425417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ulrich, S. M. "Single-Photon And Photon Pair Emission From Individual (In,Ga)As Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mejía-Salazar, J. R., N. Porras-Montenegro, J. Darío Perea, Marília Caldas, and Nelson Studart. "The electron Landé g-factor in GaAs-(Ga, Al)As cylindrical quantum dots." In PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors. AIP, 2010. http://dx.doi.org/10.1063/1.3295507.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "In(Ga)As quantum dots"

1

Towe, E., G. Stoleru, and D. Pal. Self-Assembled (In,Ga)As/GaAs Quantum-Dot Nanostructures: Strain Distribution and Electronic Structure. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada395570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CEDERBERG, JEFFREY G., ROBERT M. BIEFELD, H. C. SCHNEIDER, and WENG W. CHOW. Growth and Characterization of Quantum Dots and Quantum Dots Devices. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steel, Duncan G., and Lu J. Sham. Optically Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sham, Lu J. Raman-Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brickson, Mitchell Ian, and Andrew David Baczewski. Lithographic quantum dots for quantum computation and quantum simulation. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Speck, James S., and Pierre M. Petroff. Order Lattices of Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada427868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Levy, Jeremy, Hrvoje Petek, Hong K. Kim, and Sanford Asher. Quantum Information Processing with Ferroelectrically Coupled Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada545675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steel, Duncan G., and L. J. Sham. Optically Driven Spin Based Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada519735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prather, Dennis W. Millimeter Wave Modulators Using Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada494764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography