To see the other types of publications on this topic, follow the link: In situ generation.

Journal articles on the topic 'In situ generation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'In situ generation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

El-Jaby, Ula, Michael Cunningham, and Timothy F. L. McKenna. "Miniemulsions via in situ Surfactant Generation." Macromolecular Chemistry and Physics 211, no. 12 (April 13, 2010): 1377–86. http://dx.doi.org/10.1002/macp.200900660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holden, Michael S., Arthur D. Brosius, Mark A. Hilfiker, and Erik J. Humbert. "In situ generation of (C5H5)Fe(C6H5O)." Tetrahedron Letters 41, no. 33 (August 2000): 6275–78. http://dx.doi.org/10.1016/s0040-4039(00)01087-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boussier, H., and F. Peron. "Hydrofluorination Device with “In Situ” HF Generation." Procedia Chemistry 7 (2012): 740–45. http://dx.doi.org/10.1016/j.proche.2012.10.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yichuan, Muhammed Üçüncü, Alessia Gambardella, Assel Baibek, Jin Geng, Shuo Zhang, Jessica Clavadetscher, Inga Litzen, Mark Bradley, and Annamaria Lilienkampf. "Bioorthogonal Swarming: In Situ Generation of Dendrimers." Journal of the American Chemical Society 142, no. 52 (December 16, 2020): 21615–21. http://dx.doi.org/10.1021/jacs.0c07869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moffat, Alistair, and Timothy A. H. Bell. "In situ generation of compressed inverted files." Journal of the American Society for Information Science 46, no. 7 (August 1995): 537–50. http://dx.doi.org/10.1002/(sici)1097-4571(199508)46:7<537::aid-asi7>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duhović, Selma, Saeed Khan, and Paula L. Diaconescu. "In situ generation of uranium alkyl complexes." Chemical Communications 46, no. 19 (2010): 3390. http://dx.doi.org/10.1039/b927264j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ponce de León, Carlos. "In situ anodic generation of hydrogen peroxide." Nature Catalysis 3, no. 2 (February 2020): 96–97. http://dx.doi.org/10.1038/s41929-020-0432-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xin, Chenguang, Jie Qi, Rui Zhang, Li Jin, and Yanru Zhou. "In-situ modal inspection based on transverse second harmonic generation in single CdS nanobelt." Chinese Optics Letters 19, no. 7 (2021): 071901. http://dx.doi.org/10.3788/col202119.071901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Cheng-Hsuan, Rui Huang, Jessa Marie Makabenta, Suzannah Schmidt-Malan, Robin Patel, and Vincent M. Rotello. "In situ Generation of Antibiotics using Bioorthogonal “Nanofactories”." Microbiology Insights 14 (January 2021): 117863612199712. http://dx.doi.org/10.1177/1178636121997121.

Full text
Abstract:
Prodrug strategies use chemical modifications to improve the pharmacokinetic properties and therefore therapeutic effects of parent drugs. Traditional prodrug approaches use endogenous enzymes for activation. Bioorthogonal catalysis uses processes that endogenous enzymes cannot access, providing a complementary strategy for prodrug uncaging. Site-selective activation of prodrugs to drugs (uncaging) using synthetic catalysts is a promising strategy for localized drug activation. We discuss here recent studies that incorporate metal catalysts into polymers and nanoparticle scaffolds to provide biocompatible “enzyme-like” catalysts that can penetrate bacterial biofilms and activate prodrug antibiotics in situ, affording a new strategy to treat bacterial biofilm infections with the potential for reduced off-target effects.
APA, Harvard, Vancouver, ISO, and other styles
10

Antonioletti, R., F. Bonadies, A. Lattanzi, E. S. Monteagudo, and A. Scettri. "Sharpless epoxidation by in situ generation of furylhydroperoxides." Tetrahedron Letters 33, no. 37 (September 1992): 5433–36. http://dx.doi.org/10.1016/s0040-4039(00)79114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mitchell, James W., and R. A. Holland. "Microwave plasma in situ generation of nitride reagents." Materials Letters 60, no. 12 (June 2006): 1524–26. http://dx.doi.org/10.1016/j.matlet.2005.11.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bagchi, Vivek, and Debkumar Bandyopadhyay. "In situ generation of palladium oxide nano-crystals." Journal of Organometallic Chemistry 694, no. 9-10 (April 2009): 1259–62. http://dx.doi.org/10.1016/j.jorganchem.2009.01.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kashkoush, Ismail, Lewis Liu, Nick Yialamas, and R. Novak. "In Situ Wafer Processing for Next Generation Devices." Solid State Phenomena 103-104 (April 2005): 45–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.103-104.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Qin, Yimin. "On the in situ generation of reinforcing fibers." Journal of Applied Polymer Science 54, no. 6 (November 7, 1994): 735–42. http://dx.doi.org/10.1002/app.1994.070540604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sun, C. C., and J. E. Mark. "In-situ generation of reinforcement in polyisobutylene networks." Journal of Polymer Science Part B: Polymer Physics 25, no. 7 (July 1987): 1561–64. http://dx.doi.org/10.1002/polb.1987.090250718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pettinger, Bruno, Andreas Friedrich, and Curtis Shannon. "In situ Raman and second harmonic generation studies." Electrochimica Acta 36, no. 11-12 (January 1991): 1829–33. http://dx.doi.org/10.1016/0013-4686(91)85052-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Shuoshi, Changlong Chen, Benjamin Shiau, and Jeffrey H. Harwell. "In-situ CO2 generation for EOR by using urea as a gas generation agent." Fuel 217 (April 2018): 499–507. http://dx.doi.org/10.1016/j.fuel.2017.12.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sindlinger, Christian P., Frederik S. W. Aicher, and Lars Wesemann. "Cationic Stannylenes: In Situ Generation and NMR Spectroscopic Characterization." Inorganic Chemistry 56, no. 1 (December 15, 2016): 548–60. http://dx.doi.org/10.1021/acs.inorgchem.6b02377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

MacFarlane, D. R., P. J. Newman, J. D. Cashion, and A. Edgar. "In situ generation of Eu2+ in glass-forming melts." Journal of Non-Crystalline Solids 256-257 (October 1999): 53–58. http://dx.doi.org/10.1016/s0022-3093(99)00470-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Birkin, Peter R., Steven Linfield, Jack J. Youngs, and Guy Denuault. "Generation and In Situ Electrochemical Detection of Transient Nanobubbles." Journal of Physical Chemistry C 124, no. 13 (March 19, 2020): 7544–49. http://dx.doi.org/10.1021/acs.jpcc.0c00435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ledoux, Nele, Bart Allaert, David Schaubroeck, Stijn Monsaert, Renata Drozdzak, Pascal Van Der Voort, and Francis Verpoort. "In situ generation of highly active olefin metathesis initiators." Journal of Organometallic Chemistry 691, no. 24-25 (December 2006): 5482–86. http://dx.doi.org/10.1016/j.jorganchem.2006.08.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhu, Yanping, Jiali Wang, Hang Chu, You-Chiuan Chu, and Hao Ming Chen. "In Situ/Operando Studies for Designing Next-Generation Electrocatalysts." ACS Energy Letters 5, no. 4 (March 19, 2020): 1281–91. http://dx.doi.org/10.1021/acsenergylett.0c00305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rossi, Emiliano, Pierre Woehl, and Michele Maggini. "Scalable in Situ Diazomethane Generation in Continuous-Flow Reactors." Organic Process Research & Development 16, no. 5 (December 28, 2011): 1146–49. http://dx.doi.org/10.1021/op200110a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Clayton, S. M., T. M. Ito, J. C. Ramsey, W. Wei, M. A. Blatnik, B. W. Filippone, and G. M. Seidel. "Cavallo's multiplier for in situ generation of high voltage." Journal of Instrumentation 13, no. 05 (May 14, 2018): P05017. http://dx.doi.org/10.1088/1748-0221/13/05/p05017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hirsch-Weil, Dimitri, David R. Snead, Sebastien Inagaki, Hwimin Seo, Khalil A. Abboud, and Sukwon Hong. "In situ generation of novel acyclic diaminocarbene–copper complex." Chemical Communications, no. 18 (2009): 2475. http://dx.doi.org/10.1039/b821169h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Demaerel, Joachim, Cedrick Veryser, and Wim M. De Borggraeve. "Ex situ gas generation for lab scale organic synthesis." Reaction Chemistry & Engineering 5, no. 4 (2020): 615–31. http://dx.doi.org/10.1039/c9re00497a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

El-Jaby, Ula, Michael Cunningham, and Timothy F. L. McKenna. "The Advantages of In Situ Surfactant Generation for Miniemulsions." Macromolecular Rapid Communications 31, no. 6 (January 18, 2010): 558–62. http://dx.doi.org/10.1002/marc.200900698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Silva, Hugo Santos, Hasina H. Ramanitra, Bruna A. Bregadiolli, Aurélien Tournebize, Didier Bégué, Simon A. Dowland, Christine Lartigau‐Dagron, et al. "In Situ Generation of Fullerene from a Poly(fullerene)." Journal of Polymer Science Part B: Polymer Physics 57, no. 21 (October 17, 2019): 1434–52. http://dx.doi.org/10.1002/polb.24888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chacko, Silvi A., Ian H. Krouse, Loubna A. Hammad, and Paul G. Wenthold. "In situ generation of HCN for mass spectrometric studies." Journal of the American Society for Mass Spectrometry 17, no. 1 (January 2006): 51–55. http://dx.doi.org/10.1016/j.jasms.2005.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Amakawa, Kazuhiko, Sabine Wrabetz, Jutta Kröhnert, Genka Tzolova-Müller, Robert Schlögl, and Annette Trunschke. "In Situ Generation of Active Sites in Olefin Metathesis." Journal of the American Chemical Society 134, no. 28 (July 6, 2012): 11462–73. http://dx.doi.org/10.1021/ja3011989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chang, Wen-Jong, Ellen M. Rathje, Kenneth H. Stokoe, and Kenan Hazirbaba. "In Situ Pore-Pressure Generation Behavior of Liquefiable Sand." Journal of Geotechnical and Geoenvironmental Engineering 133, no. 8 (August 2007): 921–31. http://dx.doi.org/10.1061/(asce)1090-0241(2007)133:8(921).

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

WU, HAIYAN, EFSTATHIOS S. AVGOUSTINIATOS, LARRY SWETTE, SUSAN BONNER‐WEIR, GORDON C. WEIR, and CLARK K. COLTON. "In Situ Electrochemical Oxygen Generation with an Immunoisolation Device." Annals of the New York Academy of Sciences 875, no. 1 (June 1999): 105–25. http://dx.doi.org/10.1111/j.1749-6632.1999.tb08497.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ponce de León, Carlos. "Publisher Correction: In situ anodic generation of hydrogen peroxide." Nature Catalysis 3, no. 3 (February 26, 2020): 329. http://dx.doi.org/10.1038/s41929-020-0444-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Petersen, Robert C. "In situ particle generation in a southern Swedish stream1." Limnology and Oceanography 31, no. 2 (March 1986): 432–37. http://dx.doi.org/10.4319/lo.1986.31.2.0432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Jon. "In situ column generation for a cutting-stock problem." Computers & Operations Research 34, no. 8 (August 2007): 2345–58. http://dx.doi.org/10.1016/j.cor.2005.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Murugesan, S., G. S. Sur, G. Beaucage, and J. E. Mark. "In situ generation of polyaniline in poly(dimethylsiloxane) networks." Silicon Chemistry 2, no. 5-6 (May 2005): 217–21. http://dx.doi.org/10.1007/s11201-005-6243-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ohira, Shin-Ichi, Kiyoshi Someya, and Kei Toda. "In situ gas generation for micro gas analysis system." Analytica Chimica Acta 588, no. 1 (April 2007): 147–52. http://dx.doi.org/10.1016/j.aca.2007.01.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Qian, Cheng, Yefei Wang, Zhen Yang, Zhengtian Qu, Mingchen Ding, Wuhua Chen, and Zhenpei He. "A novel in situ N2 generation system assisted by authigenic acid for formation energy enhancement in an oilfield." RSC Advances 9, no. 68 (2019): 39914–23. http://dx.doi.org/10.1039/c9ra07934c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

WANG, Qinghua, Satoshi KISHIMOTO, Yoshihisa TANAKA, Kimiyoshi NAITO, and Yutaka KAGAWA. "J112014 Generation of overlap-scanning laser microscope moire fringes using micro grids for in-situ deformation measurement." Proceedings of Mechanical Engineering Congress, Japan 2013 (2013): _J112014–1—_J112014–4. http://dx.doi.org/10.1299/jsmemecj.2013._j112014-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Munshi, Alaa M., Jessica A. Kretzmann, Cameron W. Evans, Anna M. Ranieri, Zibeon Schildkraut, Massimiliano Massi, Marck Norret, Martin Saunders, and K. Swaminathan Iyer. "Dendronised Polymers as Templates for In Situ Quantum Dot Synthesis." Australian Journal of Chemistry 73, no. 7 (2020): 658. http://dx.doi.org/10.1071/ch20071.

Full text
Abstract:
The utility of dendrimers as effective carriers for targeted drug delivery and imaging has been facilitated by a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, and multivalency. Dendrimer–quantum dot (QD) nanocomposites have traditionally been synthesised by electrostatic self-assembly of preformed dendrimers and QDs, but higher generations are associated with limited flexibility and increased cytotoxicity. In this paper, we report the fabrication of CdTe QD nanoparticles using a dendronised linear copolymer bearing thiolated fourth-generation poly(amido amine) (PAMAM) dendrons as the capping and stabilising agent. We demonstrate this approach enables synthesis of nanocomposites with aqueous and photophysical stability.
APA, Harvard, Vancouver, ISO, and other styles
41

Zou, T., S. Jiang, Y. Zhang, J. Liu, B. Yi, Y. Qi, W. L. Dissanayaka, and C. Zhang. "In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs." Journal of Dental Research 100, no. 10 (July 30, 2021): 1127–35. http://dx.doi.org/10.1177/00220345211027155.

Full text
Abstract:
Prolonged and severe hypoxia is the main cause of death of transplanted cells prior to the establishment of functional circulation. In situ generation of oxygen by oxygen-producing scaffolds—a unique solution that could produce and deliver oxygen to the adjacent cells independently of blood perfusion—has attracted considerable attention to enhance the survivability of the transplanted cells. However, the application of oxygen-generating scaffolds for facilitating cell survival in pulp-like tissue regeneration is yet to be explored. In this study, gelatin methacryloyl (GelMA)—a biocompatible scaffolding material that closely mimics the native extracellular matrix and is conducive to cell proliferation and differentiation—was used to fabricate oxygen-generating scaffolds by loading various concentrations of CaO2. The CaO2 distribution, topography, swelling, and pore size of CaO2-GelMA hydrogels were characterized in detail. The release of O2 by the scaffold and the viability, spreading, and proliferation of stem cells from apical papilla (SCAPs) encapsulated in the GelMA hydrogels with various concentrations of CaO2 under hypoxia were evaluated. In addition, cellular constructs were engineered into root canals, and cell viability within the apical, middle, and coronal portions was assessed. Our findings showed that 0.5% CaO2-GelMA was sufficient to supply in situ oxygen for maintaining the embedded SCAP viability for 1 wk. Furthermore, the 0.5% CaO2-GelMA hydrogels improved the survivability of SCAPs within the coronal portion of the engineered cellular constructs within the root canals. This work demonstrated that 0.5% CaO2-GelMA hydrogels offer a potential promising scaffold that enhances survival of the embedded SCAPs in endodontic regeneration.
APA, Harvard, Vancouver, ISO, and other styles
42

Ghernaout, D., and M. W. Naceur. "Ferrate(VI): In situ generation and water treatment – A review." Desalination and Water Treatment 30, no. 1-3 (June 2011): 319–32. http://dx.doi.org/10.5004/dwt.2011.2217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Taormina, Gabriele, Corrado Sciancalepore, Federica Bondioli, and Massimo Messori. "Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles." Polymers 10, no. 2 (February 22, 2018): 212. http://dx.doi.org/10.3390/polym10020212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fernandes, D., K. A. Heslop, A. Kelarakis, M. J. Krysmann, and L. Estevez. "In situ generation of carbon dots within a polymer matrix." Polymer 188 (February 2020): 122159. http://dx.doi.org/10.1016/j.polymer.2020.122159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zonetti, Priscila C., Alexandre B. Gaspar, Fabiana M. T. Mendes, Eledir V. Sobrinho, Eduardo F. Sousa-Aguiar, and Lucia G. Appel. "Fischer–Tropsch synthesis and the generation of DME in situ." Fuel Processing Technology 91, no. 5 (May 2010): 469–75. http://dx.doi.org/10.1016/j.fuproc.2009.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pang, J. W. L., T. M. Holden, and T. E. Mason. "In situ generation of intergranular strains in an Al7050 alloy." Acta Materialia 46, no. 5 (March 1998): 1503–18. http://dx.doi.org/10.1016/s1359-6454(97)00369-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Frese, Daniel, Siegfried Steltenkamp, Sam Schmitz, and Claudia Steinem. "In situ generation of electrochemical gradients across pore-spanning membranes." RSC Advances 3, no. 36 (2013): 15752. http://dx.doi.org/10.1039/c3ra42723d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Park, Jimin, Kyoungsuk Jin, Atharva Sahasrabudhe, Po-Han Chiang, Joseph H. Maalouf, Florian Koehler, Dekel Rosenfeld, et al. "In situ electrochemical generation of nitric oxide for neuronal modulation." Nature Nanotechnology 15, no. 8 (June 29, 2020): 690–97. http://dx.doi.org/10.1038/s41565-020-0701-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

SONG, Junfeng. "In situ generation and detection of methyl radical by voltammetry." Chinese Science Bulletin 48, no. 11 (2003): 1093. http://dx.doi.org/10.1360/02wb0181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Mingmin, Jin Li, Huixia Di, Huiqiao Liu, and Dingbin Liu. "Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation." Analytical Chemistry 89, no. 6 (March 7, 2017): 3532–37. http://dx.doi.org/10.1021/acs.analchem.6b04786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography